File size: 45,226 Bytes
56d4bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f812229
56d4bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
# coding=utf-8
# Copyright 2022 Mesh TensorFlow authors, Manta Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Manta model."""


import math
from dataclasses import dataclass
import warnings
from typing import Optional, Tuple, Union

import torch
from torch import nn
from torch.nn import CrossEntropyLoss

from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput, Seq2SeqModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.models.longformer import LongformerConfig, LongformerModel
from transformers.models.t5.configuration_t5 import T5Config
from transformers.models.t5.modeling_t5 import (
    __HEAD_MASK_WARNING_MSG,
    T5Attention,
    T5Stack,
)
from transformers.utils import (
    DUMMY_INPUTS,
    DUMMY_MASK,
    add_start_docstrings,
    add_end_docstrings,
    is_torch_fx_proxy,
    logging,
    replace_return_docstrings,
)
from .configuration_manta import MantaConfig


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "MantaConfig"
_TOKENIZER_FOR_DOC = "ByT5Tokenizer"

MANTA_PRETRAINED_MODEL_ARCHIVE_LIST = []


def gaussian_pdf(x):
    return torch.exp(-x * x / 2.0)


def pad_block_embeddings(block_embeddings, pad_length):
    if not pad_length:
        return block_embeddings

    padding_tensor_len = max(pad_length - block_embeddings.size(1), 0)

    padding_tensor = torch.zeros(
        (block_embeddings.size(0), padding_tensor_len, block_embeddings.size(2)),
        device=block_embeddings.device,
        dtype=block_embeddings.dtype,
    )
    return torch.cat([block_embeddings[:, :pad_length, :], padding_tensor], dim=1)


@add_end_docstrings()
@dataclass
class MantaSeq2SeqLMOutput(Seq2SeqLMOutput):
    """
    Base class for Manta encoder's outputs that also contains : pre-computed hidden states that can speed up sequential
    decoding.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the decoder of the model.

            If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
            hidden_size)` is output.
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
        decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
        decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
            weighted average in the cross-attention heads.
        encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        frontier_predictions: (`torch.FloatTensor`, *optional*, of shape `(batch_size, sequence_length, 1)`):
            Probability scores of being a frontier as predicted by the FrontierPredictor module.
    """

    frontier_predictions: Optional[torch.FloatTensor] = None


@dataclass
class MantaBaseModelOutput(BaseModelOutput):
    """
    Base class for Manta's outputs, with potential hidden states, attentions and Manta's frontier predictions.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        frontier_predictions: (`torch.FloatTensor`, *optional*, of shape `(batch_size, sequence_length, 1)`):
            Probability scores of being a frontier as predicted by the FrontierPredictor module.
    """

    frontier_predictions: Optional[torch.FloatTensor] = None


class MantaFrontierPredictor(nn.Module):
    def __init__(
        self,
        hidden_size,
        num_layers,
        num_attention_heads,
        dropout_rate,
        attention_window,
        max_length,
    ):
        super().__init__()

        # First, find out what the maximum position will be after tensors are padded to a multiple of local_transformer_attention_window.
        # Then, add 1 because LongFormer position embeddings are bugged when passed inputs_embeds.
        max_position_embeddings = (max_length // attention_window + 1) * attention_window + 1
        self.hidden_size = hidden_size

        self.config = LongformerConfig(
            attention_probs_dropout_prob=dropout_rate,
            attention_window=attention_window,
            hidden_act="gelu",
            hidden_dropout_prob=dropout_rate,
            hidden_size=hidden_size,
            intermediate_size=hidden_size * 4,
            max_position_embeddings=max_position_embeddings,
            num_attention_heads=num_attention_heads,
            num_hidden_layers=num_layers,
            position_embedding_type="absolute",  # Actually cannot be changed
            vocab_size=1,  # Remove almost entirely the embeddings
            pad_token_id=0,
        )
        self.local_transformer = LongformerModel(self.config)

        self.output_projection = nn.Linear(hidden_size, 1)

    def forward(self, embeddings, attention_mask):
        longformer_output = self.local_transformer(inputs_embeds=embeddings, attention_mask=attention_mask)

        projection_outputs = self.output_projection(longformer_output.last_hidden_state)

        frontier_predictions = torch.sigmoid(projection_outputs.squeeze(-1))

        return frontier_predictions


class MantaConvFeatures(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        groups,
        padding,
    ):
        """
        This nn.Module "decomposes" the convolution in order to extract and cache feature maps. This amounts to
        computing an element-wise multiplication between weights of size (hidden_dim, kernel_size) and the input.
        """
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.groups = groups
        self.padding = padding

        if groups == in_channels:
            assert (
                in_channels == out_channels
            ), "When using `groups = in_channels`, make sure to have `in_channels == out_channels`"
            self.weight = nn.Parameter(torch.Tensor(1, 1, kernel_size, out_channels))
        elif self.groups == 1:
            self.weight = nn.Parameter(torch.Tensor(in_channels, out_channels, kernel_size))
        else:
            raise ValueError("MantaConvFeatures only supports `groups = 1` or `groups = in_channels`")

        left_pad = (kernel_size - 1) // 2
        self.pad = (left_pad, kernel_size - 1 - left_pad)

        self.reset_parameters()

    def reset_parameters(self):
        """
        See https://pytorch.org/docs/stable/_modules/torch/nn/modules/conv.html#Conv1d, in the `_ConvNd` class :
            > Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
            > uniform(-1/sqrt(k), 1/sqrt(k)), where k = weight.size(1) * prod(*kernel_size)
            > For more details see: https://github.com/pytorch/pytorch/issues/15314#issuecomment-477448573"

        The reason we permute the weights before init is because `kaiming_uniform_` uses the number of in and out
        features for initialization, which are computed as tensor.size(0) and tensor.size(1). However, these
        dimensions do not correspond for my weights.
        """
        if self.groups == self.out_channels:
            nn.init.kaiming_uniform_(self.weight.permute(3, 0, 1, 2), a=math.sqrt(5))
        else:
            nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))

    def forward(self, x: torch.Tensor):
        if self.groups == 1:
            return self.forward_matmul(x)
        else:
            return self.forward_elementwise(x)

    def forward_matmul(self, x: torch.Tensor):

        if self.padding == "same":
            padded_x = self._pad_pre_conv(x)
        else:
            padded_x = x

        bs, _, seq_len = padded_x.size()

        padded_x = padded_x.transpose(-1, -2)
        # Size: (bs, seq_len+pad, hidden)

        out = padded_x.matmul(self.weight.view(self.weight.size(0), -1)).view(bs, seq_len, self.out_channels, -1)
        # Size: (bs, seq_len+pad, hidden, kernel_size)

        return out.permute(0, 2, 3, 1)

    def forward_elementwise(self, x: torch.Tensor):
        assert len(x.size()) == 3
        assert x.size(1) == self.out_channels
        # Size: (bs, hidden, seq_len)

        if self.padding == "same":
            padded_x = self._pad_pre_conv(x)
        else:
            padded_x = x

        # Unsqueeze for broadcasting with the kernel_size dim of the filters
        padded_x = padded_x.transpose(-1, -2).unsqueeze(2)
        # Size: (bs, seq_len, 1, hidden)

        out = padded_x * self.weight
        # Size: (bs, seq_len, kernel_size, hidden)

        return out.transpose(1, 3)

    def _pad_pre_conv(self, inp: torch.Tensor):
        """
        Pad with zeros at the beginning and end just like `nn.Conv1d`.
        """
        return nn.functional.pad(inp, self.pad, "constant", 0.0)

    def extra_repr(self):
        return "in_features={}, out_features={}, kernel_size={}, groups={}".format(
            self.in_channels, self.out_channels, self.kernel_size, self.groups
        )


class MantaCachedConvolutionPooling(nn.Module):
    def __init__(
        self,
        padding_length,
        output_dim,
        kernel_size,
        hidden_dim,
        depthwise_convolution,
        variance_regularization,
        mean_pool,
    ):
        super().__init__()
        self.padding_length = padding_length
        self.output_dim = output_dim
        self.kernel_size = kernel_size
        self.hidden_dim = hidden_dim
        self.depthwise_convolution = depthwise_convolution
        self.variance_regularization = variance_regularization
        self.mean_pool = mean_pool

        if isinstance(self.kernel_size, int):
            self.kernel_size = [[self.kernel_size, hidden_dim]]

        self.conv_output_dim = sum([k_dim[1] for k_dim in self.kernel_size])

        # Since the sum of the hidden dimensions of all the filters might not match the language model hidden size, we
        # specify it here
        self.out_projection = nn.Linear(self.conv_output_dim, self.output_dim, bias=True)

        self.conv_layers = nn.Sequential(
            *[
                MantaConvFeatures(self.hidden_dim, h, k, groups=h if self.depthwise_convolution else 1, padding="same")
                for (k, h) in self.kernel_size
            ]
        )

        self.eps = None
        self.conv_layer = None

    def forward(self, unconstrained_separation_probs: torch.Tensor, byte_embeddings: torch.Tensor):
        device = unconstrained_separation_probs.device
        if self.eps is None:
            self.eps = 5 * torch.finfo(unconstrained_separation_probs.dtype).resolution
            self.variance_regularization = max(self.eps, self.variance_regularization)

        if self.conv_layer is not None:
            self.conv_layer = self.conv_layer.to(device)
        batch_size, seq_len = byte_embeddings.shape[:2]

        # We set the probability of the first token to be 0 therwise the cumsum will not work
        separation_probs = unconstrained_separation_probs.clone()
        separation_probs[:, 0] = 0

        assert separation_probs.shape == (batch_size, seq_len)

        # Compute the moments of the block_id random variable
        block_id_expectation = separation_probs.cumsum(axis=-1)
        block_id_std = torch.sqrt(
            (separation_probs * (1.0 - separation_probs)).cumsum(axis=-1) + self.variance_regularization
        )

        # Get the maximum number of blocks
        max_nb_blocks = min(seq_len, (block_id_expectation + 3 * block_id_std).max().int().item() + 1)
        possible_blocks_id = torch.arange(max_nb_blocks).to(device)

        # Get the block/byte proba using the Gaussian PDF
        log_scale = block_id_std[:, None, :].log()
        log_proba = (
            -((block_id_expectation[:, None, :] - possible_blocks_id[None, :, None]) ** 2)
            / (2 * block_id_std[:, None, :])
            - log_scale
            - math.log((2 * math.pi) ** 0.5)
        )
        block_byte_proba = log_proba.softmax(-2)

        token_size = block_byte_proba.sum(-1, keepdim=True)
        regularized_token_size = torch.maximum(token_size, torch.ones_like(token_size))

        if self.mean_pool:
            block_byte_proba_normalized = block_byte_proba / regularized_token_size
        else:
            # Makes no sense to regularize using sequence length in the max_pooling case.
            block_byte_proba_normalized = block_byte_proba

        block_embeddings = self.pooling(byte_embeddings, block_byte_proba_normalized)

        pad_length = min(self.padding_length, max_nb_blocks)

        block_embeddings = pad_block_embeddings(block_embeddings, pad_length)
        block_embeddings = self.out_projection(block_embeddings)

        return block_embeddings

    def pooling(self, embeddings: torch.Tensor, block_byte_proba: torch.Tensor):
        block_embeddings = []

        for conv_layer in self.conv_layers:
            # First, compute the convolution maps SEPARATELY, i.e. without summing them together, only the element wise multiplication
            # This is similar to a cache that we'll reuse for each block probabilities.
            features = conv_layer(embeddings.transpose(1, 2)).permute(0, 3, 1, 2)
            # Size : (batch_size, seq_len + padding, hidden_dim, kernel_size)

            pad = conv_layer.pad

            for i in range(0, conv_layer.kernel_size):
                # We shift like that to match the padding done inside `conv_layer`
                features[..., i] = features[..., i].roll(pad[0] - i, 1)
            # Cut out the padded vector to obtain the right sequence length at the end
            features = features[:, pad[1] : features.size(1) - pad[0]]
            # Size : (batch_size, seq_len, hidden_dim, kernel_size)

            # Then, artificially sum the convolution features by shifting the input bytes
            padded_block_byte_proba = nn.functional.pad(block_byte_proba, pad, "constant", 0.0)
            expanded_block_byte_proba = []
            for i in range(0, conv_layer.kernel_size):
                rolled_proba = padded_block_byte_proba.clone().roll(pad[0] - i, -1)
                expanded_block_byte_proba.append(rolled_proba)
            expanded_block_byte_proba = torch.stack(expanded_block_byte_proba, -1)
            # We use :tensor.size(2) - pad instead of just :-pad because if pad = 0, we have an undesired behaviour where the whole sequence is removed
            expanded_block_byte_proba = expanded_block_byte_proba[
                :, :, pad[1] : expanded_block_byte_proba.size(2) - pad[0], :
            ]
            # Size : (batch_size, block_size, seq_len, kernel_size)

            if self.mean_pool:
                convolved = torch.einsum("b s h k, b B s k -> b B h", features, expanded_block_byte_proba)
            else:
                convolved = torch.einsum("b s h k, b B s k -> b B s h", features, expanded_block_byte_proba)
                convolved = convolved.max(dim=-2).values

            block_embeddings.append(convolved)

        block_embeddings = torch.cat(block_embeddings, dim=-1)

        return block_embeddings


class MantaPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = MantaConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        """Initialize the weights"""
        pass

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (T5Attention, T5Stack)):
            module.gradient_checkpointing = value

    def _shift_right(self, input_ids):
        decoder_start_token_id = self.config.decoder_start_token_id
        pad_token_id = self.config.pad_token_id

        assert decoder_start_token_id is not None, (
            "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id."
            " See T5 docs for more information"
        )

        # shift inputs to the right
        if is_torch_fx_proxy(input_ids):
            # Item assignment is not supported natively for proxies.
            shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
            shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
        else:
            shifted_input_ids = input_ids.new_zeros(input_ids.shape)
            shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
            shifted_input_ids[..., 0] = decoder_start_token_id

        assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
        # replace possible -100 values in labels by `pad_token_id`
        shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

        return shifted_input_ids


@add_start_docstrings(
    "The bare Manta Model transformer outputting encoder's raw hidden-states without any specific head on top."
)
class MantaEncoderModel(MantaPreTrainedModel):
    authorized_missing_keys = [
        r"encoder.embed_tokens.weight",
    ]

    def __init__(self, config: MantaConfig):
        super().__init__(config)
        self.byte_embeddings = nn.Embedding(config.vocab_size, config.byte_embedding_dim)

        self.frontier_predictor = MantaFrontierPredictor(
            hidden_size=config.byte_embedding_dim,
            num_layers=config.frontier_predictor_num_layers,
            num_attention_heads=config.frontier_predictor_num_attention_heads,
            dropout_rate=config.dropout_rate,
            attention_window=config.frontier_predictor_attention_window,
            max_length=config.max_length_inputs,
        )

        self.pooler = MantaCachedConvolutionPooling(
            padding_length=config.max_length_encoder_decoder,
            output_dim=config.d_model,
            kernel_size=config.pooling_kernel_size,
            hidden_dim=config.byte_embedding_dim,
            depthwise_convolution=config.pooling_depthwise_convolution,
            variance_regularization=config.pooling_variance_regularization,
            mean_pool=config.pooling_mean_pool,
        )

        self.t5_encoder = T5Stack(
            T5Config(
                d_model=config.d_model,
                d_kv=config.d_kv,
                d_ff=config.d_ff,
                num_layers=config.num_layers,
                num_heads=config.num_heads,
                relative_attention_num_buckets=config.relative_attention_num_buckets,
                relative_attention_max_distance=config.relative_attention_max_distance,
                dropout_rate=config.dropout_rate,
                layer_norm_epsilon=config.layer_norm_epsilon,
                initializer_factor=config.initializer_factor,
                feed_forward_proj=config.feed_forward_proj,
                pad_token_id=config.pad_token_id,
                eos_token_id=config.eos_token_id,
                is_decoder=False,
                use_cache=False,
            )
        )

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.byte_embeddings

    def set_input_embeddings(self, new_embeddings):
        self.byte_embeddings = new_embeddings

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.t5_encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)

    def _compute_pooled_representations(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
    ):
        if inputs_embeds is None and input_ids is None:
            return None

        byte_embeddings = inputs_embeds if inputs_embeds is not None else self.byte_embeddings(input_ids)

        frontier_predictions = self.frontier_predictor(byte_embeddings, attention_mask)

        pooled_representations = self.pooler(frontier_predictions, byte_embeddings)

        return pooled_representations, frontier_predictions

    @replace_return_docstrings(output_type=MantaBaseModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], MantaBaseModelOutput]:
        r"""
        Returns:

        Example:

        ```python
        >>> from transformers import ByT5Tokenizer, MantaEncoderModel

        >>> tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small")
        >>> model = MantaEncoderModel.from_pretrained("nthngdy/manta-small")
        >>> input_ids = tokenizer(
        ...     "Studies have been shown that owning a dog is good for you", return_tensors="pt"
        ... ).input_ids  # Batch size 1
        >>> outputs = model(input_ids=input_ids)
        >>> last_hidden_states = outputs.last_hidden_state
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        pooled_representations, frontier_predictions = self._compute_pooled_representations(
            input_ids, attention_mask, inputs_embeds
        )

        encoder_outputs = self.t5_encoder(
            inputs_embeds=pooled_representations,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return encoder_outputs + (frontier_predictions,)

        return MantaBaseModelOutput(frontier_predictions=frontier_predictions, **encoder_outputs)


class MantaModel(MantaPreTrainedModel):
    _keys_to_ignore_on_load_missing = [
        r"encoder_decoder.encoder.embed_tokens.weight",
        r"encoder_decoder.decoder.embed_tokens.weight",
    ]
    _keys_to_ignore_on_load_unexpected = [
        r"encoder_decoder.decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
    ]

    def __init__(self, config: MantaConfig):
        super().__init__(config)

        self.encoder = MantaEncoderModel(config)

        self.decoder_embeddings = nn.Embedding(config.vocab_size, config.d_model)
        self.decoder = T5Stack(
            T5Config(
                vocab_size=config.vocab_size,
                d_model=config.d_model,
                d_kv=config.d_kv,
                d_ff=config.d_ff,
                num_layers=config.num_decoder_layers,
                num_heads=config.num_heads,
                relative_attention_num_buckets=config.relative_attention_num_buckets,
                relative_attention_max_distance=config.relative_attention_max_distance,
                dropout_rate=config.dropout_rate,
                layer_norm_epsilon=config.layer_norm_epsilon,
                initializer_factor=config.initializer_factor,
                feed_forward_proj=config.feed_forward_proj,
                use_cache=config.use_cache,
                pad_token_id=config.pad_token_id,
                eos_token_id=config.eos_token_id,
                is_decoder=True,
                is_encoder_decoder=False,
            ),
            self.decoder_embeddings,
        )

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.encoder.get_input_embeddings()

    def set_input_embeddings(self, new_embeddings):
        self.encoder.set_input_embeddings(new_embeddings)

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @replace_return_docstrings(output_type=MantaSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        decoder_head_mask: Optional[torch.FloatTensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        decoder_inputs_embeds: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], MantaSeq2SeqLMOutput]:
        r"""
        Returns:

        Example:

        ```python
        >>> from transformers import ByT5Tokenizer, MantaModel

        >>> tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small")
        >>> model = MantaModel.from_pretrained("nthngdy/manta-small")

        >>> input_ids = tokenizer(
        ...     "Studies have been shown that owning a dog is good for you", return_tensors="pt"
        ... ).input_ids  # Batch size 1
        >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids  # Batch size 1

        >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for MantaModel.
        >>> # This is not needed for torch's MantaForConditionalGeneration as it does this internally using labels arg.
        >>> decoder_input_ids = model._shift_right(decoder_input_ids)

        >>> # forward pass
        >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
        >>> last_hidden_states = outputs.last_hidden_state
        ```"""
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        elif return_dict and not isinstance(encoder_outputs, MantaBaseModelOutput):
            encoder_outputs = MantaBaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
                frontier_predictions=encoder_outputs[3] if len(encoder_outputs) > 3 else None,
            )

        hidden_states = encoder_outputs[0]

        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return MantaSeq2SeqLMOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
            frontier_predictions=encoder_outputs.frontier_predictions,
        )


@add_start_docstrings("""Manta Model with a `language modeling` head on top.""")
class MantaForConditionalGeneration(MantaPreTrainedModel):
    _keys_to_ignore_on_load_missing = [
        r"encoder.embed_tokens.weight",
        r"decoder.embed_tokens.weight",
        r"lm_head.weight",
    ]
    _keys_to_ignore_on_load_unexpected = [
        r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
    ]

    def __init__(self, config: MantaConfig):
        super().__init__(config)
        self.model_dim = config.d_model

        self.encoder = MantaEncoderModel(config)

        self.decoder_embeddings = nn.Embedding(config.vocab_size, config.d_model)
        self.decoder = T5Stack(
            T5Config(
                vocab_size=config.vocab_size,
                d_model=config.d_model,
                d_kv=config.d_kv,
                d_ff=config.d_ff,
                num_layers=config.num_decoder_layers,
                num_heads=config.num_heads,
                relative_attention_num_buckets=config.relative_attention_num_buckets,
                relative_attention_max_distance=config.relative_attention_max_distance,
                dropout_rate=config.dropout_rate,
                layer_norm_epsilon=config.layer_norm_epsilon,
                initializer_factor=config.initializer_factor,
                feed_forward_proj=config.feed_forward_proj,
                use_cache=config.use_cache,
                pad_token_id=config.pad_token_id,
                eos_token_id=config.eos_token_id,
                is_decoder=True,
                is_encoder_decoder=False,
            ),
            self.decoder_embeddings,
        )

        self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.encoder.get_input_embeddings()

    def set_input_embeddings(self, new_embeddings):
        self.encoder.set_input_embeddings(new_embeddings)

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def get_output_embeddings(self):
        return self.lm_head

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    @replace_return_docstrings(output_type=MantaSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        decoder_head_mask: Optional[torch.FloatTensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], MantaSeq2SeqLMOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
            config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
            labels in `[0, ..., config.vocab_size]`

        Returns:

        Examples:

        ```python
        >>> from transformers import ByT5Tokenizer, MantaForConditionalGeneration

        >>> tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small")
        >>> model = MantaForConditionalGeneration.from_pretrained("nthngdy/manta-small")

        >>> # training
        >>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
        >>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
        >>> outputs = model(input_ids=input_ids, labels=labels)
        >>> loss = outputs.loss
        >>> logits = outputs.logits

        >>> # inference
        >>> input_ids = tokenizer(
        ...     "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
        ... ).input_ids  # Batch size 1
        >>> outputs = model.generate(input_ids)
        >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
        >>> # studies have shown that owning a dog is good for you.
        ```"""
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
        if head_mask is not None and decoder_head_mask is None:
            if self.config.num_layers == self.config.num_decoder_layers:
                warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
                decoder_head_mask = head_mask

        # Encode if needed (training, first prediction pass)
        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        elif return_dict and not isinstance(encoder_outputs, MantaBaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
                frontier_predictions=encoder_outputs[3] if len(encoder_outputs) > 3 else None,
            )

        hidden_states = encoder_outputs[0]

        if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
            # get decoder inputs from shifting lm labels to the right
            decoder_input_ids = self._shift_right(labels)

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            past_key_values=past_key_values,
            encoder_hidden_states=hidden_states,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = decoder_outputs[0]

        if self.config.tie_word_embeddings:
            # Rescale output before projecting on vocab
            # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
            sequence_output = sequence_output * (self.model_dim**-0.5)

        lm_logits = self.lm_head(sequence_output)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-100)
            loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
            # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666

        if not return_dict:
            output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
            return ((loss,) + output) if loss is not None else output

        return MantaSeq2SeqLMOutput(
            loss=loss,
            logits=lm_logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
            frontier_predictions=encoder_outputs.frontier_predictions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past=None,
        attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
        use_cache=None,
        encoder_outputs=None,
        **kwargs
    ):

        # cut decoder_input_ids if past is used
        if past is not None:
            input_ids = input_ids[:, -1:]

        return {
            "decoder_input_ids": input_ids,
            "past_key_values": past,
            "encoder_outputs": encoder_outputs,
            "attention_mask": attention_mask,
            "head_mask": head_mask,
            "decoder_head_mask": decoder_head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
            "use_cache": use_cache,
        }

    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return self._shift_right(labels)

    def _reorder_cache(self, past, beam_idx):
        # if decoder past is not included in output
        # speedy decoding is disabled and no need to reorder
        if past is None:
            logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
            return past

        reordered_decoder_past = ()
        for layer_past_states in past:
            # get the correct batch idx from layer past batch dim
            # batch dim of `past` is at 2nd position
            reordered_layer_past_states = ()
            for layer_past_state in layer_past_states:
                # need to set correct `past` for each of the four key / value states
                reordered_layer_past_states = reordered_layer_past_states + (
                    layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
                )

            assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
            assert len(reordered_layer_past_states) == len(layer_past_states)

            reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
        return reordered_decoder_past