--- tags: - generated_from_trainer datasets: - allenai/mslr2022 model-index: - name: baseline results: [] --- # Overview This model is a fine-tuned version of [output/ms2/led-base/baseline](https://huggingface.co/output/ms2/led-base/baseline) on the allenai/mslr2022 ms2 dataset. It achieves the following results on the evaluation set: - eval_loss: 3.7527 - eval_rouge1_fmeasure_mean: 27.9314 - eval_rouge2_fmeasure_mean: 9.4000 - eval_rougeL_fmeasure_mean: 20.9302 - eval_rougeLsum_fmeasure_mean: 23.6179 - eval_bertscore_hashcode: microsoft/deberta-xlarge-mnli_L40_no-idf_version=0.3.11(hug_trans=4.21.0.dev0)-rescaled_fast-tokenizer - eval_bertscore_f1_mean: 23.5092 - eval_seed: 42 - eval_model_name_or_path: output/ms2/led-base/baseline - eval_doc_sep_token: - eval_runtime: 820.6405 - eval_samples_per_second: 2.463 - eval_steps_per_second: 0.617 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.10.0 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1