--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.85 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5146 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9404 | 1.0 | 150 | 1.8960 | 0.45 | | 1.1667 | 2.0 | 300 | 1.2573 | 0.64 | | 0.9325 | 3.0 | 450 | 0.9343 | 0.71 | | 0.7688 | 4.0 | 600 | 0.9460 | 0.73 | | 0.5211 | 5.0 | 750 | 0.6388 | 0.78 | | 0.2001 | 6.0 | 900 | 0.5689 | 0.8 | | 0.4134 | 7.0 | 1050 | 0.5351 | 0.82 | | 0.2026 | 8.0 | 1200 | 0.6032 | 0.82 | | 0.036 | 9.0 | 1350 | 0.5002 | 0.82 | | 0.1023 | 10.0 | 1500 | 0.5171 | 0.82 | | 0.0773 | 11.0 | 1650 | 0.5088 | 0.86 | | 0.0147 | 12.0 | 1800 | 0.5146 | 0.85 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2