--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1677 - Accuracy: 0.9806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1850 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.3124 | 0.0205 | 38 | 2.2579 | 0.1857 | | 2.1472 | 1.0205 | 76 | 2.0229 | 0.4286 | | 1.3692 | 2.0205 | 114 | 1.3557 | 0.4857 | | 0.6782 | 3.0205 | 152 | 0.5930 | 0.7571 | | 0.4244 | 4.0205 | 190 | 0.4616 | 0.8286 | | 0.2646 | 5.0205 | 228 | 0.3399 | 0.9 | | 0.1 | 6.0205 | 266 | 0.1133 | 0.9714 | | 0.2128 | 7.0205 | 304 | 0.7523 | 0.8 | | 0.0967 | 8.0205 | 342 | 0.5267 | 0.8429 | | 0.0971 | 9.0205 | 380 | 0.3907 | 0.9143 | | 0.0939 | 10.0205 | 418 | 0.1479 | 0.9571 | | 0.2974 | 11.0205 | 456 | 0.3272 | 0.9 | | 0.0306 | 12.0205 | 494 | 0.2917 | 0.9 | | 0.0036 | 13.0205 | 532 | 0.1893 | 0.9429 | | 0.0742 | 14.0205 | 570 | 0.2095 | 0.9429 | | 0.0071 | 15.0205 | 608 | 0.1195 | 0.9714 | | 0.0027 | 16.0205 | 646 | 0.1051 | 0.9571 | | 0.0022 | 17.0205 | 684 | 0.0845 | 0.9714 | | 0.0019 | 18.0205 | 722 | 0.2177 | 0.9286 | | 0.0015 | 19.0205 | 760 | 0.2222 | 0.9571 | | 0.01 | 20.0205 | 798 | 0.0353 | 0.9857 | | 0.0045 | 21.0205 | 836 | 0.0630 | 0.9714 | | 0.0014 | 22.0205 | 874 | 0.0316 | 0.9714 | | 0.0014 | 23.0205 | 912 | 0.0420 | 0.9857 | | 0.002 | 24.0205 | 950 | 0.3080 | 0.9286 | | 0.1012 | 25.0205 | 988 | 0.1244 | 0.9571 | | 0.0012 | 26.0205 | 1026 | 0.1970 | 0.9429 | | 0.0011 | 27.0205 | 1064 | 0.1381 | 0.9571 | | 0.0012 | 28.0205 | 1102 | 0.0515 | 0.9714 | | 0.0022 | 29.0205 | 1140 | 0.1643 | 0.9571 | | 0.0909 | 30.0205 | 1178 | 0.1082 | 0.9714 | | 0.001 | 31.0205 | 1216 | 0.0079 | 1.0 | | 0.001 | 32.0205 | 1254 | 0.0047 | 1.0 | | 0.001 | 33.0205 | 1292 | 0.0038 | 1.0 | | 0.001 | 34.0205 | 1330 | 0.0039 | 1.0 | | 0.0013 | 35.0205 | 1368 | 0.3373 | 0.9286 | | 0.0009 | 36.0205 | 1406 | 0.1716 | 0.9714 | | 0.0011 | 37.0205 | 1444 | 0.1124 | 0.9857 | | 0.0008 | 38.0205 | 1482 | 0.1068 | 0.9857 | | 0.0008 | 39.0205 | 1520 | 0.0920 | 0.9857 | | 0.0008 | 40.0205 | 1558 | 0.0893 | 0.9857 | | 0.0008 | 41.0205 | 1596 | 0.0890 | 0.9857 | | 0.0009 | 42.0205 | 1634 | 0.0912 | 0.9857 | | 0.0008 | 43.0205 | 1672 | 0.0898 | 0.9857 | | 0.0008 | 44.0205 | 1710 | 0.0868 | 0.9857 | | 0.0008 | 45.0205 | 1748 | 0.0758 | 0.9857 | | 0.0008 | 46.0205 | 1786 | 0.0743 | 0.9857 | | 0.0117 | 47.0205 | 1824 | 0.0734 | 0.9857 | | 0.0008 | 48.0141 | 1850 | 0.0738 | 0.9857 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0