--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-good-gesturePhaseV11 results: [] --- # videomae-base-finetuned-good-gesturePhaseV11 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9461 - Loss: 0.1967 - Accuracy Hold: 1.0 - Accuracy Stroke: 0.4286 - Accuracy Recovery: 0.8947 - Accuracy Preparation: 0.9686 - Accuracy Unknown: 0.9286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1260 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | Accuracy Hold | Accuracy Stroke | Accuracy Recovery | Accuracy Preparation | Accuracy Unknown | |:-------------:|:------:|:----:|:--------:|:---------------:|:-------------:|:---------------:|:-----------------:|:--------------------:|:----------------:| | 1.2097 | 0.1008 | 127 | 0.6900 | 1.0243 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | | 0.8 | 1.1008 | 254 | 0.6900 | 0.8717 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | | 0.5199 | 2.1008 | 381 | 0.7729 | 0.6725 | 0.0 | 0.0 | 0.1765 | 0.9810 | 0.8636 | | 0.3134 | 3.1008 | 508 | 0.8428 | 0.4715 | 0.3077 | 0.0 | 0.4118 | 1.0 | 0.9091 | | 0.1561 | 4.1008 | 635 | 0.8952 | 0.4363 | 0.7692 | 0.0 | 0.7059 | 1.0 | 0.6818 | | 0.0429 | 5.1008 | 762 | 0.9432 | 0.2211 | 0.8846 | 0.5 | 0.7059 | 0.9937 | 0.9545 | | 0.2294 | 6.1008 | 889 | 0.9476 | 0.2094 | 0.8846 | 0.1667 | 0.8824 | 1.0 | 0.9091 | | 0.1214 | 7.1008 | 1016 | 0.9607 | 0.1586 | 0.8846 | 0.6667 | 0.8824 | 0.9937 | 0.9545 | | 0.1478 | 8.1008 | 1143 | 0.9432 | 0.1607 | 0.8846 | 0.6667 | 0.8824 | 0.9684 | 0.9545 | | 0.1156 | 9.0929 | 1260 | 0.9738 | 0.1177 | 1.0 | 0.6667 | 0.8824 | 0.9937 | 0.9545 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1