--- base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.834983498349835 --- # vit-base-patch16-224-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.6656 - Accuracy: 0.8350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0954 | 1.0 | 266 | 0.9451 | 0.7898 | | 0.8207 | 2.0 | 533 | 0.7111 | 0.8281 | | 0.771 | 2.99 | 798 | 0.6656 | 0.8350 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0