--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: source-type-model results: [] --- # source-type-model This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6271 - F1: 0.6772 Classifies the following tags: ``` 'Cannot Determine' 'Report/Document' 'Named Individual' 'Unnamed Individual' 'Database' 'Unnamed Group' 'Named Group' 'Vote/Poll' ``` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.12 | 100 | 0.7192 | 0.3792 | | No log | 0.25 | 200 | 0.7716 | 0.4005 | | No log | 0.37 | 300 | 0.7565 | 0.5297 | | No log | 0.49 | 400 | 0.5788 | 0.5806 | | 0.8223 | 0.62 | 500 | 0.5402 | 0.5933 | | 0.8223 | 0.74 | 600 | 0.5032 | 0.6666 | | 0.8223 | 0.86 | 700 | 0.4658 | 0.6754 | | 0.8223 | 0.99 | 800 | 0.5359 | 0.6441 | | 0.8223 | 1.11 | 900 | 0.5295 | 0.6442 | | 0.6009 | 1.23 | 1000 | 0.6077 | 0.6597 | | 0.6009 | 1.35 | 1100 | 0.6169 | 0.6360 | | 0.6009 | 1.48 | 1200 | 0.6014 | 0.6277 | | 0.6009 | 1.6 | 1300 | 0.6382 | 0.6327 | | 0.6009 | 1.72 | 1400 | 0.5226 | 0.6787 | | 0.5644 | 1.85 | 1500 | 0.4922 | 0.6485 | | 0.5644 | 1.97 | 1600 | 0.6181 | 0.6517 | | 0.5644 | 2.09 | 1700 | 0.6106 | 0.6781 | | 0.5644 | 2.22 | 1800 | 0.6652 | 0.6760 | | 0.5644 | 2.34 | 1900 | 0.6252 | 0.6739 | | 0.3299 | 2.46 | 2000 | 0.6620 | 0.6606 | | 0.3299 | 2.59 | 2100 | 0.6317 | 0.6772 | | 0.3299 | 2.71 | 2200 | 0.6170 | 0.6726 | | 0.3299 | 2.83 | 2300 | 0.6400 | 0.6773 | | 0.3299 | 2.96 | 2400 | 0.6271 | 0.6772 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3