--- language: - be license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Belarusian results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 be type: mozilla-foundation/common_voice_11_0 config: be split: validation args: be metrics: - type: wer name: WER value: 6.3671568743912 - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 be type: mozilla-foundation/common_voice_11_0 config: be split: test args: be metrics: - type: wer name: WER value: 6.79 - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: be_by split: test metrics: - type: wer value: 43.615168811067036 name: "WER (reference column: transcription)" - type: wer value: 45.89674723962996 name: "WER (reference column: raw_transcription)" --- # Whisper Small Belarusian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 be dataset. It achieves the following results on the evaluation set: - Loss on validation: 0.0706 - WER on validation set: 6.3672 - WER on test set: 6.79 ## Source code All the source coude is located both in: * [GitHub repository](https://github.com/yks72p/whisper-finetuning-be) * and under `src` folder Code in these 2 places should be the same. GitHub is used to make development and training of multiple models (small, base, etc.) easier. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 12000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.1907 | 0.08 | 1000 | 0.2546 | 25.4639 | | 0.1482 | 0.17 | 2000 | 0.1641 | 17.1676 | | 0.1175 | 0.25 | 3000 | 0.1454 | 15.5940 | | 0.0958 | 0.33 | 4000 | 0.1261 | 13.2625 | | 0.099 | 0.42 | 5000 | 0.1012 | 10.6143 | | 0.028 | 1.05 | 6000 | 0.1053 | 9.8794 | | 0.0473 | 1.13 | 7000 | 0.1029 | 10.3078 | | 0.0391 | 1.21 | 8000 | 0.0924 | 9.2419 | | 0.0423 | 1.3 | 9000 | 0.0797 | 7.9249 | | 0.0604 | 1.38 | 10000 | 0.0688 | 7.0150 | | 0.0121 | 2.01 | 11000 | 0.0696 | 6.4638 | | 0.0155 | 2.1 | 12000 | 0.0706 | 6.3672 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2