--- library_name: peft datasets: - InstaDeepAI/nucleotide_transformer_downstream_tasks_revised metrics: - f1 base_model: - tattabio/gLM2_150M model-index: - name: alejandralopezsosa/gLM2_150M-promoter_tata-lora results: - task: type: sequence-classification dataset: type: InstaDeepAI/nucleotide_transformer_downstream_tasks_revised name: nucleotide_transformer_downstream_tasks_revised config: promoter_tata split: test revision: c8c94743d3d2838b943398ee676247ac2f774122 metrics: - type: f1 value: 0.9811 --- # gLM2 LoRA adapter for TATA promoter recognition This model demonstrates the use of [gLM2_150M](https://huggingface.co/tattabio/gLM2_150M) embeddings for downstream classification. The model is fine-tuned using LoRA and obtains an F1 score of 98.11% on the TATA promoter task from the [Nucleotide Transformer benchmarks](https://huggingface.co/datasets/InstaDeepAI/nucleotide_transformer_downstream_tasks_revised). ## How to Get Started with the Model Use the code below to use the model for inference: ```python from peft import PeftModel from transformers import AutoConfig, AutoModelForSequenceClassification, AutoModel glm2 = "tattabio/gLM2_150M" adapter = "alejandralopezsosa/gLM2_150M-promoter_tata-lora" load_kwargs = { 'trust_remote_code': True, 'torch_dtype': torch.bfloat16, } config = AutoConfig.from_pretrained(adapter, **load_kwargs) base_model = AutoModelForSequenceClassification.from_config(config, **load_kwargs) base_model.glm2 = AutoModel.from_pretrained("tattabio/gLM2_150M", **load_kwargs) model = PeftModel.from_pretrained(base_model, adapter) ```