import os import torch from PIL import Image from transformers import AutoProcessor, AutoModel, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM from pathlib import Path from torch import nn import torchvision.transforms.functional as TVF CLIP_PATH = "google/siglip-so400m-patch14-384" CHECKPOINT_PATH = Path("./checkpoint") LLMA_CHECKPOINT = "John6666/Llama-3.1-8B-Lexi-Uncensored-V2-nf4" WORDS=200 PROMPT = "In one paragraph, write a very descriptive caption for this image, describe all objects, characters and their actions, describe in detail what is happening and their emotions. Include information about lighting, the style of this image and information about camera angle within {word_count} words. Don't create any title for the image." HF_TOKEN = os.environ.get("HF_TOKEN", None) class ImageAdapter(nn.Module): def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool): super().__init__() self.deep_extract = deep_extract if self.deep_extract: input_features = input_features * 5 self.linear1 = nn.Linear(input_features, output_features) self.activation = nn.GELU() self.linear2 = nn.Linear(output_features, output_features) self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features) self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features)) # Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>) self.other_tokens = nn.Embedding(3, output_features) self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3 def forward(self, vision_outputs: torch.Tensor): if self.deep_extract: x = torch.concat(( vision_outputs[-2], vision_outputs[3], vision_outputs[7], vision_outputs[13], vision_outputs[20], ), dim=-1) assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}" else: x = vision_outputs[-2] x = self.ln1(x) if self.pos_emb is not None: assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}" x = x + self.pos_emb x = self.linear1(x) x = self.activation(x) x = self.linear2(x) # <|image_start|>, IMAGE, <|image_end|> other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1)) assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}" x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1) return x def get_eot_embedding(self): return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0) def proc_img(input_image): # Preprocess image # NOTE: I found the default processor for so400M to have worse results than just using PIL directly #image = clip_processor(images=input_image, return_tensors='pt').pixel_values image = input_image.resize((384, 384), Image.LANCZOS) pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0 pixel_values = TVF.normalize(pixel_values, [0.5], [0.5]) pixel_values = pixel_values.to(device) # Embed image # This results in Batch x Image Tokens x Features with torch.amp.autocast_mode.autocast(device, enabled=True): vision_outputs = model(pixel_values=pixel_values, output_hidden_states=True) embedded_images = image_adapter(vision_outputs.hidden_states) embedded_images = embedded_images.to(device) # Build the conversation convo = [ { "role": "system", "content": "You are a helpful image captioner.", }, { "role": "user", "content": prompt_str, }, ] # Format the conversation convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True) assert isinstance(convo_string, str) # Tokenize the conversation # prompt_str is tokenized separately so we can do the calculations below convo_tokens = tokenizer.encode(convo_string, return_tensors="pt", add_special_tokens=False, truncation=False) prompt_tokens = tokenizer.encode(prompt_str, return_tensors="pt", add_special_tokens=False, truncation=False) assert isinstance(convo_tokens, torch.Tensor) and isinstance(prompt_tokens, torch.Tensor) convo_tokens = convo_tokens.squeeze(0) # Squeeze just to make the following easier prompt_tokens = prompt_tokens.squeeze(0) # Calculate where to inject the image eot_id_indices = (convo_tokens == tokenizer.convert_tokens_to_ids("<|eot_id|>")).nonzero(as_tuple=True)[0].tolist() assert len(eot_id_indices) == 2, f"Expected 2 <|eot_id|> tokens, got {len(eot_id_indices)}" preamble_len = eot_id_indices[1] - prompt_tokens.shape[0] # Number of tokens before the prompt # Embed the tokens convo_embeds = text_model.model.embed_tokens(convo_tokens.unsqueeze(0).to(device)) # Construct the input input_embeds = torch.cat([ convo_embeds[:, :preamble_len], # Part before the prompt embedded_images.to(dtype=convo_embeds.dtype), # Image convo_embeds[:, preamble_len:], # The prompt and anything after it ], dim=1).to(device) input_ids = torch.cat([ convo_tokens[:preamble_len].unsqueeze(0), torch.zeros((1, embedded_images.shape[1]), dtype=torch.long), # Dummy tokens for the image (TODO: Should probably use a special token here so as not to confuse any generation algorithms that might be inspecting the input) convo_tokens[preamble_len:].unsqueeze(0), ], dim=1).to(device) attention_mask = torch.ones_like(input_ids) # Debugging #print(f"Input to model: {repr(tokenizer.decode(input_ids[0]))}") #generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None) generate_ids = text_model.generate(input_ids, inputs_embeds=input_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, suppress_tokens=None) # Uses the default which is temp=0.6, top_p=0.9 # Trim off the prompt generate_ids = generate_ids[:, input_ids.shape[1]:] if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"): generate_ids = generate_ids[:, :-1] caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0] return caption.strip('\"') def describe_image(image_path): if not os.path.exists(image_path): print(f"File not found: {image_path}") return if not image_path.lower().endswith(".png"): print("File must be PNG.") return image = Image.open(image_path).convert("RGB") description = proc_img(image) # Output filename output_path = os.path.splitext(image_path)[0] + ".txt" # Save caption file with open(output_path, "w", encoding="utf-8") as f: f.write(description) print(f"Description save in: {output_path}") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Caption all PNG image files in a folder") parser.add_argument("folder_path", type=str, help="Folder containing images.") parser.add_argument("--prompt", type=str, help="Prompt to ask a caption.", default=None, required=False) args = parser.parse_args() # Process all PNG images in the folder folder_path = Path(args.folder_path) if not folder_path.is_dir(): print(f"Error: {folder_path} is not a valid directory.") exit(1) png_files = list(folder_path.glob("*.png")) if not png_files: print(f"No PNG files found in the directory: {folder_path}") exit(1) # Prompt if args.prompt is None: prompt_str = PROMPT.format(word_count=WORDS) else: prompt_str = args.prompt total = len(png_files) print(f"Found {total} PNG files. Processing...") device = "cuda" if torch.cuda.is_available() else "cpu" # Load CLIP print("Loading CLIP") processor = AutoProcessor.from_pretrained(CLIP_PATH) model = AutoModel.from_pretrained(CLIP_PATH).to(device) model = model.vision_model assert (CHECKPOINT_PATH / "clip_model.pt").exists() print("Loading VLM's custom vision model") checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu',weights_only=True) checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()} model.load_state_dict(checkpoint) del checkpoint # Tokenizer print("Loading tokenizer") tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH / "text_model", use_fast=True) assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}" # LLM print("Loading VLM's custom text model") text_model = AutoModelForCausalLM.from_pretrained(LLMA_CHECKPOINT , device_map=0, trust_remote_code=True,torch_dtype=torch.bfloat16) text_model.eval() # Image Adapter print("Loading image adapter") image_adapter = ImageAdapter(model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False) image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu",weights_only=True)) image_adapter.eval() image_adapter.to(device) curr = 1 for image_path in png_files: print(f"Processing image {curr} of {total}: {image_path}") curr += 1 describe_image(str(image_path))