---
base_model: akhooli/sbert_ar_nli_500k_ubc_norm
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 'بلد مخيف، صار القتل بحجه الشرف متل قتل بعوضة، واللي بيخوف اكتر من اللي واقف
مكتف ايديه ومش مساعد. وين كنآ، ووين وصلنآ، لمتى حنضل عايشين وساكتين!
'
- text: "من خلال المتابعة ..يتضح أن أكثر اللاعبين الذين يتم تسويقهم هم لاعبي امريكا\
\ الجنوبية وأقلهم الافارقة. \nمن خلال الواقع ..أكثر اللاعبين تهاونا ولعب على\
\ الواقف في آخر ٦ شهور من عقودهم هم لاعبي امريكا الجنوبية ."
- text: ' علم الحزب يا فهمانه ما حطوا لانه عم يحكي وطنيا ومشان ماحدا متلك يعترض. اذا
حطوا بتعترضي واذا ما حطوا كمان بتعترضي.'
- text: "شيوعي \nعلماني \nمسيحي\nانصار سنه \nصوفي \nيمثلك التجمع \nلا يمثلك التجمع\
\ \nاهلا بكم جميعا فنحن نريد بناء وطن ❤"
- text: كنا نهرب بحصة الرياضيات والمحاسبة وبنرجع آخر الحصة بخمس دئايئ ولمن تسئلنا
المعلمة بنحكيلها كنا عند المديرة وبتسدئنا وضلينا
inference: true
model-index:
- name: SetFit with akhooli/sbert_ar_nli_500k_ubc_norm
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8398268398268398
name: Accuracy
---
# SetFit with akhooli/sbert_ar_nli_500k_ubc_norm
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [akhooli/sbert_ar_nli_500k_ubc_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_ubc_norm) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [akhooli/sbert_ar_nli_500k_ubc_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_ubc_norm)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| positive |
- ' سبحان الله الفلسطينيين شعب خاين في كل مكان \nلاحول ولا قوة إلا بالله'
- 'يا بيك عّم تخبرنا عن شي ما فينا تعملو نحن ماًعندنا نواب ولا وزراء بمثلونا بالدولة الا اذا زهقان وعبالك ليك'
- 'جوز كذابين منافقين...'
|
| negative | - 'ربي لا تجعلني أسيء الظن بأحد ولا تجعل في قلبي شيئا على أحد ، اللهم أسألك قلباً نقياً صافيا'
- 'هشام حداد عامل فيها جون ستيوارت'
- ' بحياة اختك من وين بتجيبي اخبارك؟؟ من صغري وانا عبالي كون... LINK'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.8398 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("akhooli/setfit_ar_ubc_hs")
# Run inference
preds = model("شيوعي
علماني
مسيحي
انصار سنه
صوفي
يمثلك التجمع
لا يمثلك التجمع
اهلا بكم جميعا فنحن نريد بناء وطن ❤")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 1 | 18.8448 | 185 |
| Label | Training Sample Count |
|:---------|:----------------------|
| negative | 5200 |
| positive | 4943 |
### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: 6000
- sampling_strategy: undersampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- run_name: setfit_hate_52k_ubc_6k
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0003 | 1 | 0.297 | - |
| 0.0333 | 100 | 0.2741 | - |
| 0.0667 | 200 | 0.2178 | - |
| 0.1 | 300 | 0.1724 | - |
| 0.1333 | 400 | 0.1449 | - |
| 0.1667 | 500 | 0.1137 | - |
| 0.2 | 600 | 0.0902 | - |
| 0.2333 | 700 | 0.0708 | - |
| 0.2667 | 800 | 0.0535 | - |
| 0.3 | 900 | 0.0483 | - |
| 0.3333 | 1000 | 0.0386 | - |
| 0.3667 | 1100 | 0.0319 | - |
| 0.4 | 1200 | 0.0279 | - |
| 0.4333 | 1300 | 0.0201 | - |
| 0.4667 | 1400 | 0.0234 | - |
| 0.5 | 1500 | 0.0151 | - |
| 0.5333 | 1600 | 0.0151 | - |
| 0.5667 | 1700 | 0.0137 | - |
| 0.6 | 1800 | 0.0117 | - |
| 0.6333 | 1900 | 0.011 | - |
| 0.6667 | 2000 | 0.0097 | - |
| 0.7 | 2100 | 0.0077 | - |
| 0.7333 | 2200 | 0.0089 | - |
| 0.7667 | 2300 | 0.0069 | - |
| 0.8 | 2400 | 0.0064 | - |
| 0.8333 | 2500 | 0.0083 | - |
| 0.8667 | 2600 | 0.0061 | - |
| 0.9 | 2700 | 0.0063 | - |
| 0.9333 | 2800 | 0.0051 | - |
| 0.9667 | 2900 | 0.0047 | - |
| 1.0 | 3000 | 0.0044 | - |
| 1.0333 | 3100 | 0.0035 | - |
| 1.0667 | 3200 | 0.0034 | - |
| 1.1 | 3300 | 0.0035 | - |
| 1.1333 | 3400 | 0.0043 | - |
| 1.1667 | 3500 | 0.0035 | - |
| 1.2 | 3600 | 0.0024 | - |
| 1.2333 | 3700 | 0.003 | - |
| 1.2667 | 3800 | 0.002 | - |
| 1.3 | 3900 | 0.0029 | - |
| 1.3333 | 4000 | 0.003 | - |
| 1.3667 | 4100 | 0.002 | - |
| 1.4 | 4200 | 0.0022 | - |
| 1.4333 | 4300 | 0.0027 | - |
| 1.4667 | 4400 | 0.004 | - |
| 1.5 | 4500 | 0.001 | - |
| 1.5333 | 4600 | 0.0027 | - |
| 1.5667 | 4700 | 0.0027 | - |
| 1.6 | 4800 | 0.0014 | - |
| 1.6333 | 4900 | 0.0022 | - |
| 1.6667 | 5000 | 0.0027 | - |
| 1.7 | 5100 | 0.0018 | - |
| 1.7333 | 5200 | 0.0018 | - |
| 1.7667 | 5300 | 0.0012 | - |
| 1.8 | 5400 | 0.0014 | - |
| 1.8333 | 5500 | 0.0015 | - |
| 1.8667 | 5600 | 0.0009 | - |
| 1.9 | 5700 | 0.0012 | - |
| 1.9333 | 5800 | 0.0009 | - |
| 1.9667 | 5900 | 0.001 | - |
| 2.0 | 6000 | 0.0007 | - |
### Framework Versions
- Python: 3.10.14
- SetFit: 1.2.0.dev0
- Sentence Transformers: 3.3.0
- Transformers: 4.45.1
- PyTorch: 2.4.0
- Datasets: 3.0.1
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```