--- license: cc-by-sa-4.0 datasets: - unicamp-dl/mmarco - bclavie/mmarco-japanese-hard-negatives language: - ja --- ## Evaluation on [MIRACL japanese](https://huggingface.co/datasets/miracl/miracl) These models don't train on the MIRACL training data. | Model | nDCG@10 | Recall@1000 | Recall@5 | Recall@30 | |------------------|---------|-------------|----------|-----------| | BM25 | 0.369 | 0.931 | - | - | | splade-japanese | 0.405 | 0.931 | 0.406 | 0.663 | | splade-japanese-efficient| 0.408 | 0.954 | 0.419 | 0.718 | | splade-japanese-v2 | 0.580 | 0.967 | 0.629 | 0.844 | | splade-japanese-v2-doc | 0.478 | 0.930 | 0.514 | 0.759 | | splade-japanese-v3 | 0.604 | 0.979 | 0.647 | 0.877 | *'splade-japanese-v2-doc' model does not require query encoder during inference. 下のコードを実行すれば,単語拡張や重み付けの確認ができます. If you'd like to try it out, you can see the expansion of queries or documents by running the code below. you need to install ``` !pip install fugashi ipadic unidic-lite ``` ```python from transformers import AutoModelForMaskedLM,AutoTokenizer import torch import numpy as np model = AutoModelForMaskedLM.from_pretrained("aken12/splade-japanese-v2") tokenizer = AutoTokenizer.from_pretrained("aken12/splade-japanese-v2") vocab_dict = {v: k for k, v in tokenizer.get_vocab().items()} def encode_query(query): query = tokenizer(query, return_tensors="pt") output = model(**query, return_dict=True).logits output, _ = torch.max(torch.log(1 + torch.relu(output)) * query['attention_mask'].unsqueeze(-1), dim=1) return output with torch.no_grad(): model_output = encode_query(query="筑波大学では何の研究が行われているか?") reps = model_output idx = torch.nonzero(reps[0], as_tuple=False) dict_splade = {} for i in idx: token_value = reps[0][i[0]].item() if token_value > 0: token = vocab_dict[int(i[0])] dict_splade[token] = float(token_value) sorted_dict_splade = sorted(dict_splade.items(), key=lambda item: item[1], reverse=True) for token, value in sorted_dict_splade: print(token, value) ```