{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0fa95c6ab0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673156060804727368, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABzWB0A7UKU8c81VP2Neyb7uvwq/cFmfPc3luD+jmPK/4Hxpv1K4Qj0xLzO/IQEIOy+BmD9jKy86l/I6wNk5Ujw0FZm/5FjHPCBpGD/Ybyc8MaClv99PPT3ZByVAe14lvCmNrL8qCv8+MVTUPsztFj8HLhm+58CCP8EBHL6EJdw/rNkSQGzYp7/BrUm+WjMrv2sTab+YiFc8fN8yvxmDqLzPDxg/XoahP3uiNz/lyiY8qRaZv8WuPzy3LRg/HENnu5N8nr9Nnxs+G3aIPuwZP78pjay/Kgr/PjFU1D7M7RY/kvfzPx4DWL/J5oQ/VGsCP7t6Fb8IFKI+CgNGv+pOeT/5yim/TrY2wJ4uaz6lp5E+7DOIP3BbyL9S8znA4zP7PUPvlj9mV4O/trwBvkhaZEDIYE68a0aGwEFKBkAhFPA9H+c9PyoK/z6dUxrAzO0WP/fJRb8I3G0/9q6OPSrhtzxfJZQ+I22TPkiwq78PIFQ+fgNpv45wgzyh7jO/W4ZPvjPEmD+VFL274p04P3VIKz5c0Jw/JNJjP+0lGr/SWIJANcSoP4P8aL9bsh8+T1K3Ph/nPT8qCv8+nVMawMztFj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAjjoa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWg24PQAAAABp6fe/AAAAALUa0z0AAAAAUTD1PwAAAADXMnG9AAAAAGek5j8AAAAAqAYCPgAAAABTqOq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+JVRtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPXyCD4AAAAAi4P5vwAAAACo9mW9AAAAAGgZ3D8AAAAA4RXlvAAAAAC1vABAAAAAANWoob0AAAAA11D6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANEEdrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICXAau9AAAAAKowAMAAAAAACKYEvgAAAAAwDAFAAAAAAK5H+L0AAAAAODv0PwAAAACz2mO7AAAAAKs/4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+JJK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMfmMPQAAAAB3JPq/AAAAAPIRujwAAAAAF/LYPwAAAACoEVA9AAAAANil4j8AAAAAfT1YPQAAAACIE/u/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIy2nLRrrPeMAWyUTegDjAF0lEdAqEKJwEQoTnV9lChoBkdAiL8F+mWMTGgHTegDaAhHQKhCq5e7cwh1fZQoaAZHQIVmb7yhBZ9oB03oA2gIR0CoRyc1Gb1AdX2UKGgGR0CLNeTK1XvIaAdN6ANoCEdAqEf2B+Wnj3V9lChoBkdAii6UIToMa2gHTegDaAhHQKhQ9kPtlZp1fZQoaAZHQI2pOo99tuVoB03oA2gIR0CoURh06o2odX2UKGgGR0CKWaH3UQTVaAdN6ANoCEdAqFWXrUsnRnV9lChoBkdAgfw40EX+EWgHTegDaAhHQKhWbBdD6WR1fZQoaAZHQIFM/o7muDBoB03oA2gIR0CoXYejEehgdX2UKGgGR0CIeEdnTRYzaAdN6ANoCEdAqF2o5cTrV3V9lChoBkdAhRkJxeb/fmgHTegDaAhHQKhiMAyVObl1fZQoaAZHQHk8ZqM3qA1oB03oA2gIR0CoYvpZOi35dX2UKGgGR0CEcaWj4593aAdN6ANoCEdAqGoeOKfnOnV9lChoBkdAiIQ7mEGqxWgHTegDaAhHQKhqQlKsdT51fZQoaAZHQIPeb6UJOWVoB03oA2gIR0Cobt4oZydXdX2UKGgGR0CNalBl+VkdaAdN6ANoCEdAqG+kCq6vq3V9lChoBkdAiPseyAxzrGgHTegDaAhHQKh2z9/BnBd1fZQoaAZHQIOjLHU+cH5oB03oA2gIR0CodvsHjZL7dX2UKGgGR0CHlvE/B3zMaAdN6ANoCEdAqHu1cyFfzHV9lChoBkdAiHgH7xd6cGgHTegDaAhHQKh8fBdD6WR1fZQoaAZHQITKPK+zt1JoB03oA2gIR0Cog6PGp++edX2UKGgGR0CEdBivPkaNaAdN6ANoCEdAqIPFUVBUrHV9lChoBkdAiG0VlXiiqWgHTegDaAhHQKiIZlo11nx1fZQoaAZHQHgisHGCI1toB03oA2gIR0CoiTzKs+3ZdX2UKGgGR0CAplVUdaMaaAdN6ANoCEdAqJBxV4oqkXV9lChoBkdAhQYIlMRHw2gHTegDaAhHQKiQk6f8Mux1fZQoaAZHQHxC4/iYLLJoB03oA2gIR0ColUukcjqwdX2UKGgGR0CAn6SwnpjdaAdN6ANoCEdAqJYRKtga33V9lChoBkdAezPQvYe1bGgHTegDaAhHQKidUuOjqOd1fZQoaAZHQIFF77Gecx1oB03oA2gIR0ConXRrJr+HdX2UKGgGR0CB0KLy+YdAaAdN6ANoCEdAqKIahi9ZinV9lChoBkdAiOcd1loUSWgHTegDaAhHQKii5+3pfQd1fZQoaAZHQIjLR37k4m1oB03oA2gIR0CoqiNzbN8mdX2UKGgGR0CG4tNgSeyzaAdN6ANoCEdAqKpF/c32mHV9lChoBkdAjO9N6w+t82gHTegDaAhHQKiuvg75mAd1fZQoaAZHQIdl/LcKw6hoB03oA2gIR0Cor4a6J66bdX2UKGgGR0CMTAJCSidraAdN6ANoCEdAqLabLns9jnV9lChoBkdAihDbmMfigmgHTegDaAhHQKi2wQpWmxd1fZQoaAZHQI+MFv2oNutoB03oA2gIR0Cou2z4k/r0dX2UKGgGR0CMZYwK0D2baAdN6ANoCEdAqLw6rWAf+3V9lChoBkdAce2dYW+GoWgHTegDaAhHQKjDb17pmmN1fZQoaAZHQIpGe2JBPbhoB03oA2gIR0Cow5Gbb1yvdX2UKGgGR0CKlZeYUnG9aAdN6ANoCEdAqMgXVmSQo3V9lChoBkdAjSkKmsNlRWgHTegDaAhHQKjI3w2l2vB1fZQoaAZHQIsz4nDziCJoB03oA2gIR0Coz/Zhz/6wdX2UKGgGR0CF6soESuhcaAdN6ANoCEdAqNAXRE4NqnV9lChoBkdAi114Jmdy1mgHTegDaAhHQKjUhqSHM2Z1fZQoaAZHQIkDmBvrGBFoB03oA2gIR0Co1UtCRfWudX2UKGgGR0CKV8fL9uP4aAdN6ANoCEdAqNxKxFAmiXV9lChoBkdAjQOwY1pCbGgHTegDaAhHQKjcbxvvSc91fZQoaAZHQIQGij3225RoB03oA2gIR0Co4O+0w8GLdX2UKGgGR0CJWXvYvnKXaAdN6ANoCEdAqOG6YeDFqHV9lChoBkdAgTDAc1fmcWgHTegDaAhHQKjo2S+QEIR1fZQoaAZHQIDEhnWattBoB03oA2gIR0Co6PvR7Z3+dX2UKGgGR0CBTx0Bfa6CaAdN6ANoCEdAqO1prULDynV9lChoBkdAgJPSSmqHXWgHTegDaAhHQKjuOKiwjdJ1fZQoaAZHQIJgqlN1yNpoB03oA2gIR0Co9XodMj/udX2UKGgGR0B+0Anx8UmEaAdN6ANoCEdAqPWbxd6cAnV9lChoBkdAdMjG0u14PmgHTegDaAhHQKj6KWiUPhB1fZQoaAZHQIHC5NVR1oxoB03oA2gIR0Co+utZNfw7dX2UKGgGR0CCsvKwpvxZaAdN6ANoCEdAqQH+23KB/nV9lChoBkdAfcCrkbPyCmgHTegDaAhHQKkCIVTrE+B1fZQoaAZHQHOEvwAlv61oB03oA2gIR0CpBrQoCuEFdX2UKGgGR0BxGMduHerNaAdN6ANoCEdAqQeAiFCb+nV9lChoBkdAdKA/J/5Ly2gHTegDaAhHQKkOnkjHGS91fZQoaAZHQH+2BFVktmNoB03oA2gIR0CpDsJrULDydX2UKGgGR0CHNdhhpg1FaAdN6ANoCEdAqRNPv4M4LnV9lChoBkdAi4LIgV45cWgHTegDaAhHQKkUHTho/Rp1fZQoaAZHQIqpzOC5EtxoB03oA2gIR0CpGzW8RL9NdX2UKGgGR0CK2q1mapgkaAdN6ANoCEdAqRtYkE9t/HV9lChoBkdAi80Fnh86WGgHTegDaAhHQKkf2z0HyEt1fZQoaAZHQIgcHhl18stoB03oA2gIR0CpIK0pEx7BdX2UKGgGR0CDcu3dbgTAaAdN6ANoCEdAqSfWoDPnjnV9lChoBkdAi79F2eQMhGgHTegDaAhHQKkn+ZRbbDd1fZQoaAZHQIg6eg6EJ0JoB03oA2gIR0CpLHo/iYLLdX2UKGgGR0CEbhVWjoIOaAdN6ANoCEdAqS1BXp4bCXV9lChoBkdAh0tkZaV2R2gHTegDaAhHQKk0ZbHp8nh1fZQoaAZHQIay9dRiw0RoB03oA2gIR0CpNIZwwTM8dX2UKGgGR0CLNx36hxo7aAdN6ANoCEdAqTj5/I8yOHV9lChoBkdAjUf2Ebo8p2gHTegDaAhHQKk5vsvZh8Z1fZQoaAZHQI67E9GI9DBoB03oA2gIR0CpQMvm5lOHdX2UKGgGR0CNmugHu7YkaAdN6ANoCEdAqUDuaH9FWnV9lChoBkdAi0g/MfRu0mgHTegDaAhHQKlFar+YMOR1fZQoaAZHQIwue4/eLvVoB03oA2gIR0CpRjZtm+TNdX2UKGgGR0CMsaCEHt4SaAdN6ANoCEdAqU8yJO32EnV9lChoBkdAg9OQrMC9y2gHTegDaAhHQKlPVR64Uex1fZQoaAZHQIzaU6T4cm1oB03oA2gIR0CpU+3M6ij+dX2UKGgGR0CES8GeMAFQaAdN6ANoCEdAqVTJBAv+O3V9lChoBkdAil2PtlZowmgHTegDaAhHQKlcAdsi0OV1fZQoaAZHQIE6Mk6cRUZoB03oA2gIR0CpXCRBNVR2dX2UKGgGR0CGrhd1MdtEaAdN6ANoCEdAqWCjdxhlUnV9lChoBkdAigzG+bmU4mgHTegDaAhHQKlhar8zhxZ1fZQoaAZHQIy6ZtHhCMRoB03oA2gIR0CpaJ4L1EmZdX2UKGgGR0CNN4bdadMCaAdN6ANoCEdAqWjAiV0LdHV9lChoBkdAjpJs41gpjWgHTegDaAhHQKltYbYK6Wh1fZQoaAZHQIKUty1eBxxoB03oA2gIR0CpbjVAAyVOdX2UKGgGR0CM9XV3EAHWaAdN6ANoCEdAqXVuoYNy53V9lChoBkdAirsXKB/ZumgHTegDaAhHQKl1kclPact1fZQoaAZHQInJwuK4x1xoB03oA2gIR0CpeiQOWjXWdX2UKGgGR0CFufVCHARDaAdN6ANoCEdAqXrvdsSCe3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}