--- base_model: openai/whisper-small datasets: - mozilla-foundation/common_voice_11_0 language: - yo license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: Whisper Small Yo - Bola Ologundudu results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: yo split: None args: 'config: yo, split: test' metrics: - type: wer value: 70.61345018098686 name: Wer --- # Whisper Small Yoruba - Bola Ologundudu This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.2225 - Wer: 70.6135 ## Model description from transformers import pipeline import torch modelName="ajibs75/whisper-small-yoruba" device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline(task="automatic-speech-recognition",model=modelName,chunk_length_s=30,device=device,) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="yo", task="transcribe") audio = "sample.mp3" text = pipe(audio) transacribed_audio = text["text"] print(transacribed_audio) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.066 | 7.6923 | 1000 | 0.8962 | 74.0141 | | 0.004 | 15.3846 | 2000 | 1.1411 | 71.6613 | | 0.0004 | 23.0769 | 3000 | 1.1959 | 70.6516 | | 0.0003 | 30.7692 | 4000 | 1.2225 | 70.6135 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.1.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1