Pawitsapak
commited on
Commit
•
cccb59a
1
Parent(s):
be940ba
Update README.md
Browse files
README.md
CHANGED
@@ -1,79 +1,44 @@
|
|
1 |
---
|
2 |
-
datasets:
|
3 |
-
|
4 |
-
|
|
|
5 |
pipeline_tag: sentence-similarity
|
6 |
tags:
|
7 |
-
-
|
8 |
-
-
|
9 |
-
- feature-extraction
|
10 |
widget: []
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
|
14 |
|
15 |
-
This
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
<!-- - **Training Dataset:** Unknown -->
|
26 |
-
<!-- - **Language:** Unknown -->
|
27 |
-
<!-- - **License:** Unknown -->
|
28 |
|
29 |
-
|
30 |
|
31 |
-
-
|
32 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
33 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
34 |
|
35 |
-
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
SentenceTransformer(
|
39 |
-
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
40 |
-
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
41 |
-
(2): Normalize()
|
42 |
-
)
|
43 |
-
```
|
44 |
-
|
45 |
-
## Usage
|
46 |
-
|
47 |
-
### Direct Usage (Sentence Transformers)
|
48 |
-
|
49 |
-
First install the Sentence Transformers library:
|
50 |
-
|
51 |
-
```bash
|
52 |
-
pip install -U sentence-transformers
|
53 |
-
```
|
54 |
-
|
55 |
-
Then you can load this model and run inference.
|
56 |
-
```python
|
57 |
-
from sentence_transformers import SentenceTransformer
|
58 |
-
|
59 |
-
# Download from the 🤗 Hub
|
60 |
-
model = SentenceTransformer("sentence_transformers_model_id")
|
61 |
-
# Run inference
|
62 |
-
sentences = [
|
63 |
-
'The weather is lovely today.',
|
64 |
-
"It's so sunny outside!",
|
65 |
-
'He drove to the stadium.',
|
66 |
-
]
|
67 |
-
embeddings = model.encode(sentences)
|
68 |
-
print(embeddings.shape)
|
69 |
-
# [3, 1024]
|
70 |
-
|
71 |
-
# Get the similarity scores for the embeddings
|
72 |
-
similarities = model.similarity(embeddings, embeddings)
|
73 |
-
print(similarities.shape)
|
74 |
-
# [3, 3]
|
75 |
-
```
|
76 |
|
|
|
|
|
77 |
<!--
|
78 |
### Direct Usage (Transformers)
|
79 |
|
@@ -109,36 +74,8 @@ You can finetune this model on your own dataset.
|
|
109 |
|
110 |
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
111 |
-->
|
112 |
-
|
113 |
-
## Training Details
|
114 |
-
|
115 |
-
### Framework Versions
|
116 |
-
- Python: 3.10.14
|
117 |
-
- Sentence Transformers: 3.0.1
|
118 |
-
- Transformers: 4.34.0
|
119 |
-
- PyTorch: 2.1.0+cu121
|
120 |
-
- Accelerate: 0.21.0
|
121 |
-
- Datasets: 2.21.0
|
122 |
-
- Tokenizers: 0.14.1
|
123 |
-
|
124 |
## Citation
|
125 |
|
126 |
### BibTeX
|
127 |
-
|
128 |
-
<!--
|
129 |
-
## Glossary
|
130 |
-
|
131 |
-
*Clearly define terms in order to be accessible across audiences.*
|
132 |
-
-->
|
133 |
-
|
134 |
-
<!--
|
135 |
-
## Model Card Authors
|
136 |
-
|
137 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
138 |
-
-->
|
139 |
-
|
140 |
-
<!--
|
141 |
-
## Model Card Contact
|
142 |
-
|
143 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
144 |
-
-->
|
|
|
1 |
---
|
2 |
+
datasets:
|
3 |
+
- airesearch/WangchanX-Legal-ThaiCCL-RAG
|
4 |
+
language:
|
5 |
+
- th
|
6 |
pipeline_tag: sentence-similarity
|
7 |
tags:
|
8 |
+
- legal
|
9 |
+
- RAG
|
|
|
10 |
widget: []
|
11 |
+
license: mit
|
12 |
+
base_model:
|
13 |
+
- BAAI/bge-m3
|
14 |
---
|
15 |
|
16 |
+
## WangchanX-Legal-ThaiCCL-Retriever: A Thai Legal Text Retriever
|
17 |
|
18 |
+
This model card describes WangchanX-Legal-ThaiCCL-Retriever, a retriever model fine-tuned from the bge-m3 model on the WangchanX-Legal-ThaiCCL-RAG dataset. It is designed to retrieve relevant legal text sections in response to legal questions posed in Thai, specifically focusing on Corporate and Commercial Law (CCL).
|
19 |
|
20 |
+
**Model Details:**
|
21 |
|
22 |
+
* **Base Model:** [bge-m3](https://huggingface.co/BAAI/bge-m3)
|
23 |
+
* **Fine-tuned Dataset:** [WangchanX-Legal-ThaiCCL-RAG dataset](https://huggingface.co/datasets/airesearch/WangchanX-Legal-ThaiCCL-RAG)
|
24 |
+
* **Language:** Thai
|
25 |
+
* **Maximum Sequence Length:** 8192 tokens
|
26 |
+
* **Output Dimensionality:** 1024 tokens
|
27 |
+
* **License:** MIT
|
|
|
|
|
|
|
28 |
|
29 |
+
**WangchanX-Legal-ThaiCCL-RAG**
|
30 |
|
31 |
+
This dataset focuses on supporting Thai legal question-answering systems using Retrieval-Augmented Generation (RAG), focusing on Corporate and Commercial Law.
|
|
|
|
|
32 |
|
33 |
+
**Intended Use Cases:**
|
34 |
+
This model is designed for use as a retriever model within a larger RAG pipeline.
|
35 |
+
* **Legal Question Answering:** Serving as a core component in a larger question-answering system that provides answers to user queries about Thai law.
|
36 |
+
* **Legal Information Retrieval:** Enabling efficient retrieval of information from Thai legal texts.
|
37 |
|
38 |
+
<!-- ## Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
This model is designed for use as a retriever model within a larger RAG pipeline. Given a legal question in Thai, it will retrieve the most relevant sections from the Thai CCL corpus. You can integrate this model into your application using the Hugging Face Transformers library.
|
41 |
+
-->
|
42 |
<!--
|
43 |
### Direct Usage (Transformers)
|
44 |
|
|
|
74 |
|
75 |
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
76 |
-->
|
77 |
+
<!--
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
## Citation
|
79 |
|
80 |
### BibTeX
|
81 |
+
-->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|