--- language: ko tags: - bert - mrc datasets: - klue license: cc-by-sa-4.0 --- # bert-base for QA **Code:** See [Ainize Workspace](https://link.ainize.ai/3qER4lw) **klue-bert-base-mrc DEMO**: [Ainize DEMO](https://main-klue-mrc-bert-scy6500.endpoint.ainize.ai/) **klue-bert-base-mrc API**: [Ainize API](https://ainize.ai/scy6500/KLUE-MRC-BERT?branch=main) ## Overview **Language model:** klue/bert-base **Language:** Korean **Downstream-task:** Extractive QA **Training data:** KLUE-MRC **Eval data:** KLUE-MRC ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("ainize/klue-bert-base-mrc") model = AutoModelForQuestionAnswering.from_pretrained("ainize/klue-bert-base-mrc") context = "your context" question = "your question" encodings = tokenizer(context, question, max_length=512, truncation=True, padding="max_length", return_token_type_ids=False) encodings = {key: torch.tensor([val]) for key, val in encodings.items()} input_ids = encodings["input_ids"] attention_mask = encodings["attention_mask"] pred = model(input_ids, attention_mask=attention_mask) start_logits, end_logits = pred.start_logits, pred.end_logits token_start_index, token_end_index = start_logits.argmax(dim=-1), end_logits.argmax(dim=-1) pred_ids = input_ids[0][token_start_index: token_end_index + 1] prediction = tokenizer.decode(pred_ids) ``` ## About us [Teachable NLP](https://ainize.ai/teachable-nlp) - Train NLP models with your own text without writing any code [Ainize](https://ainize.ai/) - Deploy ML project using free gpu