import os import hydra import aiflows from aiflows.backends.api_info import ApiInfo from aiflows.utils.general_helpers import read_yaml_file, quick_load_api_keys from aiflows import logging from aiflows.flow_cache import CACHING_PARAMETERS, clear_cache from aiflows.utils import serving from aiflows.workers import run_dispatch_worker_thread from aiflows.messages import FlowMessage from aiflows.interfaces import KeyInterface from aiflows.utils.colink_utils import start_colink_server from aiflows import flow_verse dependencies = [ { "url": "aiflows/FunSearchFlowModule", "revision": os.path.abspath("../") } ] flow_verse.sync_dependencies(dependencies) logging.set_verbosity_debug() if __name__ == "__main__": cl = start_colink_server() serving.recursive_serve_flow( cl=cl, flow_class_name="flow_modules.aiflows.FunSearchFlowModule.SamplerFlow", flow_endpoint="SamplerFlow", ) run_dispatch_worker_thread(cl) config_overrides = read_yaml_file(os.path.join(".", "demo.yaml")) api_information = [ApiInfo(backend_used="openai", api_key = os.getenv("OPENAI_API_KEY"))] quick_load_api_keys(config_overrides, api_information, key="api_infos") funsearch_proxy = serving.get_flow_instance( cl=cl, flow_endpoint="SamplerFlow", config_overrides=config_overrides, ) code = \ """ #function used to evaluate the program: def evaluate(solve_function: str, tests_inputs: List[str], expected_outputs: str) -> float: \"\"\"Returns the score of the solve function we're evolving based on the tests_inputs and expected_outputs. Scores are between 0 and 1, unless the program fails to run, in which case the score is -1. \"\"\" if solve(solve_function, tests_inputs, expected_outputs) == True: return 1.0 return 0.0 def solve_function_v0(input) -> str: \"\"\"Scores per test: test_1:{'score': 1.0, 'feedback': 'No feedback available.'} test_2:{'score': 1.0, 'feedback': 'No feedback available.'} test_3:{'score': 0.0, 'feedback': 'No feedback available.'} test_4:{'score': -1, 'feedback': 'Invalid Format of prediction'}\"\"\" return 'YES' def solve_function_v1(input) -> str: \"\"\"Improved version of solve_function_v0\"\"\" """ header = \ """ \"\"\"Problem Description: Serval has a string s that only consists of 0 and 1 of length n. The i-th character of s is denoted as s_i, where 1\leq i\leq n. Serval can perform the following operation called Inversion Magic on the string s: Choose an segment [l, r] (1\leq l\leq r\leq n). For l\leq i\leq r, change s_i into 1 if s_i is 0, and change s_i into 0 if s_i is 1. For example, let s be 010100 and the segment [2,5] is chosen. The string s will be 001010 after performing the Inversion Magic. Serval wants to make s a palindrome after performing Inversion Magic exactly once. Help him to determine whether it is possible. A string is a palindrome iff it reads the same backwards as forwards. For example, 010010 is a palindrome but 10111 is not. Input Description: Input Each test contains multiple test cases. The first line contains the number of test cases t (1\leq t\leq 10^4). The description of the test cases follows. The first line of each test case contains a single integer n (2\leq n\leq 10^5) — the length of string s. The second line of each test case contains a binary string s of length n. Only characters 0 and 1 can appear in s. It's guaranteed that the sum of n over all test cases does not exceed 2\cdot 10^5. Output Description: Output For each test case, print Yes if s can be a palindrome after performing Inversion Magic exactly once, and print No if not. You can output Yes and No in any case (for example, strings yEs, yes, Yes and YES will be recognized as a positive response). Public Tests: Test 1: Input: ['1', '4', '1001'] Output: 'YES' Test 2: Input: ['1', '5', '10010'] Output: 'YES' Test 3: Input: ['1', '7', '0111011'] Output: 'NO' \"\"\" import ast import itertools import numpy as np from typing import List def solve(solve_function: str,input: List[str], expected_output: str) -> str: \"\"\"function used to run the solve function on input *kwargs and return the the predicted output :param solve_function: the function to run (the solve function below as a string) :type solve_function: str :param kwargs: the inputs to the solve function :type kwargs: List[str] \"\"\" local_namespace = {} exec(solve_function,local_namespace) found_name, program_name = get_function_name_from_code(solve_function) if not found_name: raise ValueError(f"Function name not found in program: {solve_function}") solve_fn = local_namespace.get(program_name) prediction = solve_fn(input) prediction = prediction.split() expected_output = expected_output.split() if len(prediction) != len(expected_output): raise ValueError(f"Invalid Format of prediction") for i in range(len(prediction)): if prediction[i] != expected_output[i]: return False return True def evaluate(solve_function: str, tests_inputs: List[str], expected_outputs: str) -> float: \"\"\"Returns the score of the solve function we're evolving based on the tests_inputs and expected_outputs. Scores are between 0 and 1, unless the program fails to run, in which case the score is -1. \"\"\" if solve(solve_function,tests_inputs,expected_outputs) == True: return 1.0 return 0.0 def get_function_name_from_code(code): tree = ast.parse(code) for node in ast.walk(tree): if isinstance(node, ast.FunctionDef): return True, node.name # something is wrong return False, None """ data = { 'code': code, 'header': header } input_message = funsearch_proxy.package_input_message(data = data) funsearch_proxy.send_message(input_message) future = funsearch_proxy.get_reply_future(input_message) response = future.get_data() print("~~~Response~~~") print(response)