import os import hydra import aiflows from aiflows.backends.api_info import ApiInfo from aiflows.utils.general_helpers import read_yaml_file, quick_load_api_keys from aiflows import logging from aiflows.flow_cache import CACHING_PARAMETERS, clear_cache from aiflows.utils import serving from aiflows.workers import run_dispatch_worker_thread from aiflows.messages import FlowMessage from aiflows.interfaces import KeyInterface from aiflows.utils.colink_utils import start_colink_server from aiflows import flow_verse dependencies = [ { "url": "aiflows/FunSearchFlowModule", "revision": os.path.abspath("../") } ] flow_verse.sync_dependencies(dependencies) logging.set_verbosity_debug() if __name__ == "__main__": cl = start_colink_server() serving.recursive_serve_flow( cl=cl, flow_class_name="flow_modules.aiflows.FunSearchFlowModule.EvaluatorFlow", flow_endpoint="EvaluatorFlow", ) run_dispatch_worker_thread(cl) config_overrides = read_yaml_file(os.path.join(".", "demo.yaml")) funsearch_proxy = serving.get_flow_instance( cl=cl, flow_endpoint="EvaluatorFlow", config_overrides=config_overrides, ) data = { 'artifact': \ 'def solve_function(input) -> str:\n """Attempt at solving the problem given the input input and returns the predicted output (see the top of the file for problem description)"""\n return \'YES\'\n' } input_message = funsearch_proxy.package_input_message(data = data) funsearch_proxy.send_message(input_message) future = funsearch_proxy.get_reply_future(input_message) response = future.get_data() print("~~~Response~~~") print(response)