aienthused commited on
Commit
fcb678f
1 Parent(s): 8c4f2cc

Push LunarLander-v2 model test

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 265.33 +/- 18.32
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0777d3b820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0777d3b8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0777d3b940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0777d3b9d0>", "_build": "<function ActorCriticPolicy._build at 0x7f0777d3ba60>", "forward": "<function ActorCriticPolicy.forward at 0x7f0777d3baf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0777d3bb80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0777d3bc10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0777d3bca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0777d3bd30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0777d3bdc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0777d3be50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0777d4f4c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678355118636409523, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0ALT3D1TK8irgUvSO4hT0M5Tq9Ao/hOQAAgD8AAIA/gLQVPT37B7sLL8Q7xGYuPZ/aPDxiSxK+AACAPwAAgD+AgQY9e8zZugLaxLrHirA8yOfRO56yl70AAIA/AACAPyC8gT5XaCM/7Q8cPW0r076XYJM+q6FNvQAAAAAAAAAAGsbCPfbAJLpCIvs7TnWbNlfS5LozkJs1AACAPwAAAADmFuq9/NCXP2saX77JxQe/RwyBvqCGQb0AAAAAAAAAAIDGPD0DTRu8H7MUvRqZ6jt+h4m9ZWnSPAAAgD8AAIA/2taTPa9qOz5tqi6+7vl8vot+aLxDfvO9AAAAAAAAAAAAqKK7+dRkP+rEnT2iWfa+wEpju93QWj0AAAAAAAAAACPEcb4S5I4/QPckvr9AB7/+iNG+Kw+vPAAAAAAAAAAAAGNxvbD4oD/Nj1u+IakCvzjuxr1eOmG+AAAAAAAAAAAAd9s8lIK5vFHhmbzibay9FmlsPeJxSz4AAIA/AACAP+Y/BL1fonE+tr+0Oz1rnb5o2mq8kMfPPAAAAAAAAAAATWxNPa6FlLprwekzbssmLWx+pTiKQLGzAACAPwAAgD9ARYM9w5FAulO5O7kgUlK0IQO3Oq28XTgAAIA/AAAAAJpRpb2K/wE/YpUrPj5vkL4L9wC9suCiPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZB9kWbDLcECUhpRSlIwBbJRNEQGMAXSUR0CXNUGKhtcfdX2UKGgGaAloD0MItJHrplSHcECUhpRSlGgVS+VoFkdAlzYz2zv7WXV9lChoBmgJaA9DCEKY270cenFAlIaUUpRoFUvtaBZHQJc2Pv9cbBJ1fZQoaAZoCWgPQwgnS633Gw1LQJSGlFKUaBVLiGgWR0CXNpZPEbYLdX2UKGgGaAloD0MIPbt868PMckCUhpRSlGgVS+ZoFkdAlzaXdCVrynV9lChoBmgJaA9DCPzgfOoYHnNAlIaUUpRoFUv2aBZHQJc2xrvb48F1fZQoaAZoCWgPQwihvmVOV2xwQJSGlFKUaBVL/WgWR0CXNu97WuoxdX2UKGgGaAloD0MIuvlGdM+9cECUhpRSlGgVTQUBaBZHQJc3H84xUNt1fZQoaAZoCWgPQwhUpwNZT0ZyQJSGlFKUaBVL/2gWR0CXN6O6/ZdwdX2UKGgGaAloD0MIsHQ+PItScECUhpRSlGgVS+JoFkdAlzfryQPqcHV9lChoBmgJaA9DCMhe7/74/W5AlIaUUpRoFU0KAWgWR0CXOA7DVH4HdX2UKGgGaAloD0MINUQV/sw+ckCUhpRSlGgVTS8BaBZHQJc4Fszl90B1fZQoaAZoCWgPQwhvRWKCmjhyQJSGlFKUaBVL6mgWR0CXOZ+T/yXldX2UKGgGaAloD0MItMcL6fDzc0CUhpRSlGgVS/doFkdAlznl0T101nV9lChoBmgJaA9DCKCIRQy7n29AlIaUUpRoFU0pAWgWR0CXOh2ZRbbDdX2UKGgGaAloD0MIv9GOG75TcUCUhpRSlGgVTRYBaBZHQJc6ZkGzKLd1fZQoaAZoCWgPQwgWhPI+jmRRQJSGlFKUaBVLv2gWR0CXOz5u63AmdX2UKGgGaAloD0MIg2itaHNHckCUhpRSlGgVS+BoFkdAlztV/Ue+23V9lChoBmgJaA9DCLix2ZEq83BAlIaUUpRoFUvtaBZHQJc8BEXtSht1fZQoaAZoCWgPQwiiKqbSzxRvQJSGlFKUaBVNJwFoFkdAlzwYqkM1CXV9lChoBmgJaA9DCAr2X+fmEnFAlIaUUpRoFUvwaBZHQJc8Su7pV0d1fZQoaAZoCWgPQwg9f9qojvdyQJSGlFKUaBVNFAFoFkdAlzyUVvddmnV9lChoBmgJaA9DCICBIEDG/XJAlIaUUpRoFUvgaBZHQJc807/4qPR1fZQoaAZoCWgPQwhClC9ooXxwQJSGlFKUaBVNFgFoFkdAlz0Cf6Ggz3V9lChoBmgJaA9DCMIwYMmVk3BAlIaUUpRoFUvzaBZHQJc9sU0vXbx1fZQoaAZoCWgPQwhn7iHhewhxQJSGlFKUaBVNNQFoFkdAlz41ndweeXV9lChoBmgJaA9DCFSrr66Kv3FAlIaUUpRoFU0RAWgWR0CXPjbcXWOIdX2UKGgGaAloD0MI1cxaCkikcUCUhpRSlGgVTRsBaBZHQJc+j7gsK9h1fZQoaAZoCWgPQwg+6USCaTdxQJSGlFKUaBVL8GgWR0CXP4cU/OdHdX2UKGgGaAloD0MI9UiD29rWb0CUhpRSlGgVS+FoFkdAlz+vxYq5LHV9lChoBmgJaA9DCKG5TiPtg3BAlIaUUpRoFU0lAWgWR0CXQJYcvM8pdX2UKGgGaAloD0MIKv9aXrmmckCUhpRSlGgVS+ZoFkdAl0DI7V8TjHV9lChoBmgJaA9DCKXXZmOlOXNAlIaUUpRoFUv1aBZHQJdBEXdj5Kx1fZQoaAZoCWgPQwhyh01kpn5zQJSGlFKUaBVL02gWR0CXQdcHWz4UdX2UKGgGaAloD0MIbAVNS6xAbUCUhpRSlGgVS/VoFkdAl0HeJHiFTXV9lChoBmgJaA9DCIgrZ++MfG5AlIaUUpRoFU1IAWgWR0CXQgPnSv1UdX2UKGgGaAloD0MI/DVZo945c0CUhpRSlGgVS/ZoFkdAl0LjvJA+p3V9lChoBmgJaA9DCOWZl8MujnNAlIaUUpRoFU0fAWgWR0CXQvd7v5P/dX2UKGgGaAloD0MI6s9+pEhMcECUhpRSlGgVTS0BaBZHQJdWucwxnFp1fZQoaAZoCWgPQwh6F+/HbYRuQJSGlFKUaBVL82gWR0CXVxUAksz3dX2UKGgGaAloD0MIJvvnaUBFbkCUhpRSlGgVS+poFkdAl1dHbZezEHV9lChoBmgJaA9DCJAWZwwznnFAlIaUUpRoFU1QAWgWR0CXV1PCEYfodX2UKGgGaAloD0MIvXDnwsiub0CUhpRSlGgVTR8BaBZHQJdXoQwsXi11fZQoaAZoCWgPQwjDRe7palVvQJSGlFKUaBVNEgFoFkdAl1fVQ2uPm3V9lChoBmgJaA9DCCfeAZ505nFAlIaUUpRoFU0KAWgWR0CXWRn13+uOdX2UKGgGaAloD0MIbVM8Lio7c0CUhpRSlGgVS+poFkdAl1lcXrMTvnV9lChoBmgJaA9DCPrRcMociHBAlIaUUpRoFUvgaBZHQJdZZWkrPMV1fZQoaAZoCWgPQwjpnQq4p0ZwQJSGlFKUaBVNMwFoFkdAl1noR28qWnV9lChoBmgJaA9DCOXsndFWl3BAlIaUUpRoFU0NAWgWR0CXWfvllsgudX2UKGgGaAloD0MIeVxUiwircECUhpRSlGgVTQ4BaBZHQJdbph8Yyft1fZQoaAZoCWgPQwijlBCsqiltQJSGlFKUaBVNEgFoFkdAl1wJtzjm0XV9lChoBmgJaA9DCHBCIQIOinJAlIaUUpRoFU0lAWgWR0CXXH0QbuMNdX2UKGgGaAloD0MIdXRcjexIcUCUhpRSlGgVTR8BaBZHQJddzySV4X51fZQoaAZoCWgPQwgydOygUpRwQJSGlFKUaBVL52gWR0CXXeMRYigTdX2UKGgGaAloD0MIF4BG6RIMcUCUhpRSlGgVTQgBaBZHQJdeUrmQr+Z1fZQoaAZoCWgPQwgF+G7zRkduQJSGlFKUaBVL+mgWR0CXXqkB0ZFYdX2UKGgGaAloD0MIHY8ZqAySbUCUhpRSlGgVTToBaBZHQJde5YPoV211fZQoaAZoCWgPQwhGeHsQQl1xQJSGlFKUaBVL8WgWR0CXXxq6OHWSdX2UKGgGaAloD0MIPrMkQA3zckCUhpRSlGgVTQQBaBZHQJdfbAXVLBd1fZQoaAZoCWgPQwiUEReAhu5yQJSGlFKUaBVNIQFoFkdAl1+c3AEdNnV9lChoBmgJaA9DCG6GG/D5CUlAlIaUUpRoFUuoaBZHQJdfqFajesR1fZQoaAZoCWgPQwiqfToes1VxQJSGlFKUaBVL82gWR0CXYNqqOtGNdX2UKGgGaAloD0MIuamB5nM4cUCUhpRSlGgVS+1oFkdAl2D/T5O8CnV9lChoBmgJaA9DCAu45/nTOHBAlIaUUpRoFUvvaBZHQJdhGoIfKZF1fZQoaAZoCWgPQwju6eqOBRBwQJSGlFKUaBVNCgFoFkdAl2KuzyBkJHV9lChoBmgJaA9DCMnogCRsJHFAlIaUUpRoFUvYaBZHQJdjBejVQRB1fZQoaAZoCWgPQwg+CWzOgR5xQJSGlFKUaBVL42gWR0CXYxH6/IsAdX2UKGgGaAloD0MIu0T11kAJc0CUhpRSlGgVS/1oFkdAl2TEJ0GNaXV9lChoBmgJaA9DCOWZl8OuinBAlIaUUpRoFUvhaBZHQJdmARcu8K51fZQoaAZoCWgPQwj6fmq8NM5wQJSGlFKUaBVL3mgWR0CXZir1/Ue/dX2UKGgGaAloD0MIYTdsW1R0ckCUhpRSlGgVS9FoFkdAl2aFnuiN83V9lChoBmgJaA9DCPg0Jy8yBXJAlIaUUpRoFU0QAWgWR0CXZv6E8JUpdX2UKGgGaAloD0MI6+I2GsBVbUCUhpRSlGgVS+1oFkdAl2b7leWv83V9lChoBmgJaA9DCMcPlUaM5HBAlIaUUpRoFU0NAWgWR0CXZ1XjlxOtdX2UKGgGaAloD0MIdChDVcyNcECUhpRSlGgVTSwBaBZHQJdn8c+7lJZ1fZQoaAZoCWgPQwh5I/PIX1ZxQJSGlFKUaBVL+WgWR0CXaBJSiudPdX2UKGgGaAloD0MIgNQmTm4rckCUhpRSlGgVS9BoFkdAl2g4NRWLgnV9lChoBmgJaA9DCIzyzMthZ3BAlIaUUpRoFU0FAWgWR0CXaDTSLIgedX2UKGgGaAloD0MIyXTo9HxtcUCUhpRSlGgVTQYBaBZHQJdp1RhttQ91fZQoaAZoCWgPQwg8wJMW7jJxQJSGlFKUaBVNEQFoFkdAl2qIacZtN3V9lChoBmgJaA9DCP6eWKfKo3BAlIaUUpRoFUvpaBZHQJdrXkxREWt1fZQoaAZoCWgPQwghdxGmKElwQJSGlFKUaBVL+2gWR0CXa6KsuFpPdX2UKGgGaAloD0MIj20ZcJa6cUCUhpRSlGgVS/poFkdAl2wBY3eenXV9lChoBmgJaA9DCI16iEY3J3JAlIaUUpRoFUvgaBZHQJdsxtSAH3V1fZQoaAZoCWgPQwjRXRJnReVTQJSGlFKUaBVLsGgWR0CXbd/RE4NrdX2UKGgGaAloD0MIuvlGdA+8cECUhpRSlGgVS99oFkdAl25OPeYUnHV9lChoBmgJaA9DCJdUbTeBEHFAlIaUUpRoFUv4aBZHQJduaaWom5V1fZQoaAZoCWgPQwgo1T4dj2ZyQJSGlFKUaBVNBwFoFkdAl29p5Z8rqnV9lChoBmgJaA9DCJC7CFPUDHJAlIaUUpRoFUvlaBZHQJdvaYAsCkp1fZQoaAZoCWgPQwgzFeKRuBlyQJSGlFKUaBVNEAFoFkdAl2/sxKxs23V9lChoBmgJaA9DCFWmmIOgzW9AlIaUUpRoFUv4aBZHQJdv7Cj1wo91fZQoaAZoCWgPQwjnASzyK0NwQJSGlFKUaBVNAQFoFkdAl2/53kgfVHV9lChoBmgJaA9DCLWkoxyMG3NAlIaUUpRoFUvvaBZHQJdxBjwx33Z1fZQoaAZoCWgPQwg1s5YCUklyQJSGlFKUaBVL9GgWR0CXcatUXHindX2UKGgGaAloD0MIa0jcY6lhc0CUhpRSlGgVS/doFkdAl3KdyksSTXV9lChoBmgJaA9DCLGJzFygX3JAlIaUUpRoFUvpaBZHQJdzLkJa7mN1fZQoaAZoCWgPQwiw6NZruklwQJSGlFKUaBVNGwFoFkdAl3N18stkF3V9lChoBmgJaA9DCJks7j/yZXNAlIaUUpRoFU0OAWgWR0CXc51dPci4dX2UKGgGaAloD0MITFRvDWyQbkCUhpRSlGgVS+RoFkdAl3Qe4LCvYHV9lChoBmgJaA9DCCBGCI92GXFAlIaUUpRoFUvhaBZHQJd0nWI42jx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d29ef1ac35a3c7da28fcc62cec70b7b13c6b90ebfa13c4da0fcf44bc06d685b
3
+ size 147352
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0777d3b820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0777d3b8b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0777d3b940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0777d3b9d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0777d3ba60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0777d3baf0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0777d3bb80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0777d3bc10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0777d3bca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0777d3bd30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0777d3bdc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0777d3be50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f0777d4f4c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678355118636409523,
52
+ "learning_rate": 0.001,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0ALT3D1TK8irgUvSO4hT0M5Tq9Ao/hOQAAgD8AAIA/gLQVPT37B7sLL8Q7xGYuPZ/aPDxiSxK+AACAPwAAgD+AgQY9e8zZugLaxLrHirA8yOfRO56yl70AAIA/AACAPyC8gT5XaCM/7Q8cPW0r076XYJM+q6FNvQAAAAAAAAAAGsbCPfbAJLpCIvs7TnWbNlfS5LozkJs1AACAPwAAAADmFuq9/NCXP2saX77JxQe/RwyBvqCGQb0AAAAAAAAAAIDGPD0DTRu8H7MUvRqZ6jt+h4m9ZWnSPAAAgD8AAIA/2taTPa9qOz5tqi6+7vl8vot+aLxDfvO9AAAAAAAAAAAAqKK7+dRkP+rEnT2iWfa+wEpju93QWj0AAAAAAAAAACPEcb4S5I4/QPckvr9AB7/+iNG+Kw+vPAAAAAAAAAAAAGNxvbD4oD/Nj1u+IakCvzjuxr1eOmG+AAAAAAAAAAAAd9s8lIK5vFHhmbzibay9FmlsPeJxSz4AAIA/AACAP+Y/BL1fonE+tr+0Oz1rnb5o2mq8kMfPPAAAAAAAAAAATWxNPa6FlLprwekzbssmLWx+pTiKQLGzAACAPwAAgD9ARYM9w5FAulO5O7kgUlK0IQO3Oq28XTgAAIA/AAAAAJpRpb2K/wE/YpUrPj5vkL4L9wC9suCiPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZB9kWbDLcECUhpRSlIwBbJRNEQGMAXSUR0CXNUGKhtcfdX2UKGgGaAloD0MItJHrplSHcECUhpRSlGgVS+VoFkdAlzYz2zv7WXV9lChoBmgJaA9DCEKY270cenFAlIaUUpRoFUvtaBZHQJc2Pv9cbBJ1fZQoaAZoCWgPQwgnS633Gw1LQJSGlFKUaBVLiGgWR0CXNpZPEbYLdX2UKGgGaAloD0MIPbt868PMckCUhpRSlGgVS+ZoFkdAlzaXdCVrynV9lChoBmgJaA9DCPzgfOoYHnNAlIaUUpRoFUv2aBZHQJc2xrvb48F1fZQoaAZoCWgPQwihvmVOV2xwQJSGlFKUaBVL/WgWR0CXNu97WuoxdX2UKGgGaAloD0MIuvlGdM+9cECUhpRSlGgVTQUBaBZHQJc3H84xUNt1fZQoaAZoCWgPQwhUpwNZT0ZyQJSGlFKUaBVL/2gWR0CXN6O6/ZdwdX2UKGgGaAloD0MIsHQ+PItScECUhpRSlGgVS+JoFkdAlzfryQPqcHV9lChoBmgJaA9DCMhe7/74/W5AlIaUUpRoFU0KAWgWR0CXOA7DVH4HdX2UKGgGaAloD0MINUQV/sw+ckCUhpRSlGgVTS8BaBZHQJc4Fszl90B1fZQoaAZoCWgPQwhvRWKCmjhyQJSGlFKUaBVL6mgWR0CXOZ+T/yXldX2UKGgGaAloD0MItMcL6fDzc0CUhpRSlGgVS/doFkdAlznl0T101nV9lChoBmgJaA9DCKCIRQy7n29AlIaUUpRoFU0pAWgWR0CXOh2ZRbbDdX2UKGgGaAloD0MIv9GOG75TcUCUhpRSlGgVTRYBaBZHQJc6ZkGzKLd1fZQoaAZoCWgPQwgWhPI+jmRRQJSGlFKUaBVLv2gWR0CXOz5u63AmdX2UKGgGaAloD0MIg2itaHNHckCUhpRSlGgVS+BoFkdAlztV/Ue+23V9lChoBmgJaA9DCLix2ZEq83BAlIaUUpRoFUvtaBZHQJc8BEXtSht1fZQoaAZoCWgPQwiiKqbSzxRvQJSGlFKUaBVNJwFoFkdAlzwYqkM1CXV9lChoBmgJaA9DCAr2X+fmEnFAlIaUUpRoFUvwaBZHQJc8Su7pV0d1fZQoaAZoCWgPQwg9f9qojvdyQJSGlFKUaBVNFAFoFkdAlzyUVvddmnV9lChoBmgJaA9DCICBIEDG/XJAlIaUUpRoFUvgaBZHQJc807/4qPR1fZQoaAZoCWgPQwhClC9ooXxwQJSGlFKUaBVNFgFoFkdAlz0Cf6Ggz3V9lChoBmgJaA9DCMIwYMmVk3BAlIaUUpRoFUvzaBZHQJc9sU0vXbx1fZQoaAZoCWgPQwhn7iHhewhxQJSGlFKUaBVNNQFoFkdAlz41ndweeXV9lChoBmgJaA9DCFSrr66Kv3FAlIaUUpRoFU0RAWgWR0CXPjbcXWOIdX2UKGgGaAloD0MI1cxaCkikcUCUhpRSlGgVTRsBaBZHQJc+j7gsK9h1fZQoaAZoCWgPQwg+6USCaTdxQJSGlFKUaBVL8GgWR0CXP4cU/OdHdX2UKGgGaAloD0MI9UiD29rWb0CUhpRSlGgVS+FoFkdAlz+vxYq5LHV9lChoBmgJaA9DCKG5TiPtg3BAlIaUUpRoFU0lAWgWR0CXQJYcvM8pdX2UKGgGaAloD0MIKv9aXrmmckCUhpRSlGgVS+ZoFkdAl0DI7V8TjHV9lChoBmgJaA9DCKXXZmOlOXNAlIaUUpRoFUv1aBZHQJdBEXdj5Kx1fZQoaAZoCWgPQwhyh01kpn5zQJSGlFKUaBVL02gWR0CXQdcHWz4UdX2UKGgGaAloD0MIbAVNS6xAbUCUhpRSlGgVS/VoFkdAl0HeJHiFTXV9lChoBmgJaA9DCIgrZ++MfG5AlIaUUpRoFU1IAWgWR0CXQgPnSv1UdX2UKGgGaAloD0MI/DVZo945c0CUhpRSlGgVS/ZoFkdAl0LjvJA+p3V9lChoBmgJaA9DCOWZl8MujnNAlIaUUpRoFU0fAWgWR0CXQvd7v5P/dX2UKGgGaAloD0MI6s9+pEhMcECUhpRSlGgVTS0BaBZHQJdWucwxnFp1fZQoaAZoCWgPQwh6F+/HbYRuQJSGlFKUaBVL82gWR0CXVxUAksz3dX2UKGgGaAloD0MIJvvnaUBFbkCUhpRSlGgVS+poFkdAl1dHbZezEHV9lChoBmgJaA9DCJAWZwwznnFAlIaUUpRoFU1QAWgWR0CXV1PCEYfodX2UKGgGaAloD0MIvXDnwsiub0CUhpRSlGgVTR8BaBZHQJdXoQwsXi11fZQoaAZoCWgPQwjDRe7palVvQJSGlFKUaBVNEgFoFkdAl1fVQ2uPm3V9lChoBmgJaA9DCCfeAZ505nFAlIaUUpRoFU0KAWgWR0CXWRn13+uOdX2UKGgGaAloD0MIbVM8Lio7c0CUhpRSlGgVS+poFkdAl1lcXrMTvnV9lChoBmgJaA9DCPrRcMociHBAlIaUUpRoFUvgaBZHQJdZZWkrPMV1fZQoaAZoCWgPQwjpnQq4p0ZwQJSGlFKUaBVNMwFoFkdAl1noR28qWnV9lChoBmgJaA9DCOXsndFWl3BAlIaUUpRoFU0NAWgWR0CXWfvllsgudX2UKGgGaAloD0MIeVxUiwircECUhpRSlGgVTQ4BaBZHQJdbph8Yyft1fZQoaAZoCWgPQwijlBCsqiltQJSGlFKUaBVNEgFoFkdAl1wJtzjm0XV9lChoBmgJaA9DCHBCIQIOinJAlIaUUpRoFU0lAWgWR0CXXH0QbuMNdX2UKGgGaAloD0MIdXRcjexIcUCUhpRSlGgVTR8BaBZHQJddzySV4X51fZQoaAZoCWgPQwgydOygUpRwQJSGlFKUaBVL52gWR0CXXeMRYigTdX2UKGgGaAloD0MIF4BG6RIMcUCUhpRSlGgVTQgBaBZHQJdeUrmQr+Z1fZQoaAZoCWgPQwgF+G7zRkduQJSGlFKUaBVL+mgWR0CXXqkB0ZFYdX2UKGgGaAloD0MIHY8ZqAySbUCUhpRSlGgVTToBaBZHQJde5YPoV211fZQoaAZoCWgPQwhGeHsQQl1xQJSGlFKUaBVL8WgWR0CXXxq6OHWSdX2UKGgGaAloD0MIPrMkQA3zckCUhpRSlGgVTQQBaBZHQJdfbAXVLBd1fZQoaAZoCWgPQwiUEReAhu5yQJSGlFKUaBVNIQFoFkdAl1+c3AEdNnV9lChoBmgJaA9DCG6GG/D5CUlAlIaUUpRoFUuoaBZHQJdfqFajesR1fZQoaAZoCWgPQwiqfToes1VxQJSGlFKUaBVL82gWR0CXYNqqOtGNdX2UKGgGaAloD0MIuamB5nM4cUCUhpRSlGgVS+1oFkdAl2D/T5O8CnV9lChoBmgJaA9DCAu45/nTOHBAlIaUUpRoFUvvaBZHQJdhGoIfKZF1fZQoaAZoCWgPQwju6eqOBRBwQJSGlFKUaBVNCgFoFkdAl2KuzyBkJHV9lChoBmgJaA9DCMnogCRsJHFAlIaUUpRoFUvYaBZHQJdjBejVQRB1fZQoaAZoCWgPQwg+CWzOgR5xQJSGlFKUaBVL42gWR0CXYxH6/IsAdX2UKGgGaAloD0MIu0T11kAJc0CUhpRSlGgVS/1oFkdAl2TEJ0GNaXV9lChoBmgJaA9DCOWZl8OuinBAlIaUUpRoFUvhaBZHQJdmARcu8K51fZQoaAZoCWgPQwj6fmq8NM5wQJSGlFKUaBVL3mgWR0CXZir1/Ue/dX2UKGgGaAloD0MIYTdsW1R0ckCUhpRSlGgVS9FoFkdAl2aFnuiN83V9lChoBmgJaA9DCPg0Jy8yBXJAlIaUUpRoFU0QAWgWR0CXZv6E8JUpdX2UKGgGaAloD0MI6+I2GsBVbUCUhpRSlGgVS+1oFkdAl2b7leWv83V9lChoBmgJaA9DCMcPlUaM5HBAlIaUUpRoFU0NAWgWR0CXZ1XjlxOtdX2UKGgGaAloD0MIdChDVcyNcECUhpRSlGgVTSwBaBZHQJdn8c+7lJZ1fZQoaAZoCWgPQwh5I/PIX1ZxQJSGlFKUaBVL+WgWR0CXaBJSiudPdX2UKGgGaAloD0MIgNQmTm4rckCUhpRSlGgVS9BoFkdAl2g4NRWLgnV9lChoBmgJaA9DCIzyzMthZ3BAlIaUUpRoFU0FAWgWR0CXaDTSLIgedX2UKGgGaAloD0MIyXTo9HxtcUCUhpRSlGgVTQYBaBZHQJdp1RhttQ91fZQoaAZoCWgPQwg8wJMW7jJxQJSGlFKUaBVNEQFoFkdAl2qIacZtN3V9lChoBmgJaA9DCP6eWKfKo3BAlIaUUpRoFUvpaBZHQJdrXkxREWt1fZQoaAZoCWgPQwghdxGmKElwQJSGlFKUaBVL+2gWR0CXa6KsuFpPdX2UKGgGaAloD0MIj20ZcJa6cUCUhpRSlGgVS/poFkdAl2wBY3eenXV9lChoBmgJaA9DCI16iEY3J3JAlIaUUpRoFUvgaBZHQJdsxtSAH3V1fZQoaAZoCWgPQwjRXRJnReVTQJSGlFKUaBVLsGgWR0CXbd/RE4NrdX2UKGgGaAloD0MIuvlGdA+8cECUhpRSlGgVS99oFkdAl25OPeYUnHV9lChoBmgJaA9DCJdUbTeBEHFAlIaUUpRoFUv4aBZHQJduaaWom5V1fZQoaAZoCWgPQwgo1T4dj2ZyQJSGlFKUaBVNBwFoFkdAl29p5Z8rqnV9lChoBmgJaA9DCJC7CFPUDHJAlIaUUpRoFUvlaBZHQJdvaYAsCkp1fZQoaAZoCWgPQwgzFeKRuBlyQJSGlFKUaBVNEAFoFkdAl2/sxKxs23V9lChoBmgJaA9DCFWmmIOgzW9AlIaUUpRoFUv4aBZHQJdv7Cj1wo91fZQoaAZoCWgPQwjnASzyK0NwQJSGlFKUaBVNAQFoFkdAl2/53kgfVHV9lChoBmgJaA9DCLWkoxyMG3NAlIaUUpRoFUvvaBZHQJdxBjwx33Z1fZQoaAZoCWgPQwg1s5YCUklyQJSGlFKUaBVL9GgWR0CXcatUXHindX2UKGgGaAloD0MIa0jcY6lhc0CUhpRSlGgVS/doFkdAl3KdyksSTXV9lChoBmgJaA9DCLGJzFygX3JAlIaUUpRoFUvpaBZHQJdzLkJa7mN1fZQoaAZoCWgPQwiw6NZruklwQJSGlFKUaBVNGwFoFkdAl3N18stkF3V9lChoBmgJaA9DCJks7j/yZXNAlIaUUpRoFU0OAWgWR0CXc51dPci4dX2UKGgGaAloD0MITFRvDWyQbkCUhpRSlGgVS+RoFkdAl3Qe4LCvYHV9lChoBmgJaA9DCCBGCI92GXFAlIaUUpRoFUvhaBZHQJd0nWI42jx1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 252,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a30d11c24d8eb1566babb6b12204a1d7cf2557c1c79f85746fcab8b123a07ce2
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d948951c63cf0746ab409766c3a5a3b606755d78e22d7ad3d898d88cb482ecac
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (207 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 265.33267657210604, "std_reward": 18.31928803402799, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-09T10:39:15.483503"}