--- datasets: - wikisql pipeline_tag: text-generation tags: - llama --- # AI2sql AI2sql is a state-of-the-art LLM for converting natural language questions to SQL queries. # Model Card: Fine-tuning Llama 2 for AI2SQL Query Generation This model card outlines the fine-tuning of the Llama 2 model to generate SQL queries for AI2SQL tasks. ## Model Details - **Original Model:** NousResearch/Llama-2-7b-chat-hf - **Model Type:** Large Language Model - **Fine-tuning Task:** AI2SQL (SQL Query Generation) - **Fine-tuned Model Name:** llama-2-7b-miniguanaco ## Implementation - **Environment Requirement:** GPU-supported platform with minimum 20GB RAM. - **Dependencies:** accelerate==0.21.0, peft==0.4.0, bitsandbytes==0.40.2, transformers==4.31.0, trl==0.4.7 - **GPU Specification:** T4 or equivalent (as of 24 Aug 2023) ## Training Details - **Dataset:** WikiSQL - **Method:** Supervised Fine-Tuning (SFT) - **Epochs:** 1 - **Batch Size:** 4 per GPU - **Optimization:** AdamW with cosine learning rate schedule - **Learning Rate:** 2e-4 - **Special Features:** - LoRA for efficient parameter adjustment. - 4-bit precision model loading with BitsAndBytes. - Gradient checkpointing and clipping. ## Performance Metrics - **Accuracy:** 85% (on a held-out test set from WikiSQL) - **Query Generation Time:** Average of 0.5 seconds per query - **Resource Efficiency:** Demonstrates 30% reduced memory usage compared to the base model ## Usage and Applications TBD Note: The performance metrics provided here are hypothetical and for illustrative purposes only. Actual performance would depend on various factors, including the specifics of the dataset and training regimen.