--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # bertopic-test_3030 This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("ahessamb/bertopic-test_3030") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 30 * Number of training documents: 1570
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | 0 | apecoin - neckline - shoulders - fluctuating - chart | 2 | 0_apecoin_neckline_shoulders_fluctuating | | 1 | astra - letter - investors - coindesk - bankruptcy | 84 | 1_astra_letter_investors_coindesk | | 2 | 26 - bulls - rsi - ceiling - low | 30 | 2_26_bulls_rsi_ceiling | | 3 | mutant - mayc - bayc - club - nfts | 112 | 3_mutant_mayc_bayc_club | | 4 | shib - doge - shiba - sentiment - dogecoin | 115 | 4_shib_doge_shiba_sentiment | | 5 | xrp - btc - lawsuit - sleuth - bullish | 47 | 5_xrp_btc_lawsuit_sleuth | | 6 | binance - securities - crypto - coinbase - regulatory | 147 | 6_binance_securities_crypto_coinbase | | 7 | ordibots - ordinals - collection - gbrc721 - text | 33 | 7_ordibots_ordinals_collection_gbrc721 | | 8 | kitao - sbi - xrp - ripple - holdings | 95 | 8_kitao_sbi_xrp_ripple | | 9 | listings - exponential - coin - ethereum - defi | 163 | 9_listings_exponential_coin_ethereum | | 10 | yuan - event - games - rewards - olympics | 68 | 10_yuan_event_games_rewards | | 11 | emptydoc - richmond - fashion - shiba - community | 15 | 11_emptydoc_richmond_fashion_shiba | | 12 | sygnum - crypto - piggy - btr - huobi | 59 | 12_sygnum_crypto_piggy_btr | | 13 | dln - debridge - chains - liquidity - slippage | 3 | 13_dln_debridge_chains_liquidity | | 14 | longitude - chronometer - bitcoin - ships - rogers | 5 | 14_longitude_chronometer_bitcoin_ships | | 15 | arbitrum - airdrop - recipients - scalability - ethereum | 14 | 15_arbitrum_airdrop_recipients_scalability | | 16 | ethereum - fidelity - blackrock - cryptocurrency - fee | 111 | 16_ethereum_fidelity_blackrock_cryptocurrency | | 17 | swyftx - shibarium - token - shiba - shibaswap | 17 | 17_swyftx_shibarium_token_shiba | | 18 | zachxbt - squid - huang - donation - accused | 21 | 18_zachxbt_squid_huang_donation | | 19 | reading - trend - leaning - ltc - breakdown | 2 | 19_reading_trend_leaning_ltc | | 20 | tether - reserve - gusd - cbdcs - bills | 45 | 20_tether_reserve_gusd_cbdcs | | 21 | lace - brave - mobile - wallet - iog | 2 | 21_lace_brave_mobile_wallet | | 22 | binance - day - coinbase - exchange - bitcoin | 82 | 22_binance_day_coinbase_exchange | | 23 | v3 - bnb - repurchase - peng - pancakeswap | 2 | 23_v3_bnb_repurchase_peng | | 24 | xrp - banks - ripple - institutions - p2p | 6 | 24_xrp_banks_ripple_institutions | | 25 | ada - level - litecoin - cardano - resistance | 186 | 25_ada_level_litecoin_cardano | | 26 | xrp - hoskinson - cardano - securities - analisa | 26 | 26_xrp_hoskinson_cardano_securities | | 27 | peaq - lunc - fetch - cosmos - terra | 73 | 27_peaq_lunc_fetch_cosmos | | 28 | kostin - russia - sanctions - currency - yuan | 2 | 28_kostin_russia_sanctions_currency | | 29 | upgrade - terra - lunc - chrome - jumps | 3 | 29_upgrade_terra_lunc_chrome |
## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False ## Framework versions * Numpy: 1.22.4 * HDBSCAN: 0.8.29 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.30.2 * Numba: 0.56.4 * Plotly: 5.13.1 * Python: 3.10.12