from typing import Dict, List, Any import PIL import torch import base64 import os import io from transformers import ViTImageProcessor, ViTModel device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class PreTrainedPipeline(): def __init__(self, path=""): self.model = ViTModel.from_pretrained( pretrained_model_name_or_path=path, config=os.path.join(path, 'config.json') ) self.model.eval() self.model = self.model.to(device) self.processor = ViTImageProcessor.from_pretrained( pretrained_model_name_or_path=os.path.join( path, 'preprocessor_config.json') ) def __call__(self, data: Any) -> Dict[str, List[float]]: """ Args: data (:dict | str:): Includes the input data and the parameters for the inference. Inputs should be an image encoded in base 64. Return: A :obj:`dict`:. The object returned should be a dict like {"feature_vector": [0.6331314444541931,...,-0.7866355180740356,]} containing : - "feature_vector": A list of floats corresponding to the image embedding. """ inputs = data.pop("inputs", data) # decode base64 image to PIL image = PIL.Image.open(io.BytesIO(base64.b64decode(inputs['image']))) inputs = self.processor(images=image, return_tensors="pt") outputs = self.model(**inputs) feature_vector = outputs.last_hidden_state[0, 0].tolist() # postprocess the prediction return {"feature_vector": feature_vector}