--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer base_model: openai/whisper-medium model-index: - name: whisper-medium-ar-original results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - type: wer value: 14.108618654073199 name: Wer --- # whisper-medium-ar-original This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1852 - Wer: 14.1086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.115 | 1.01 | 400 | 0.1204 | 18.6541 | | 0.0774 | 2.02 | 800 | 0.1074 | 15.5844 | | 0.0438 | 3.03 | 1200 | 0.1160 | 16.4699 | | 0.0233 | 4.04 | 1600 | 0.1279 | 15.1122 | | 0.0131 | 5.05 | 2000 | 0.1350 | 15.5254 | | 0.0051 | 6.06 | 2400 | 0.1455 | 14.9941 | | 0.0035 | 7.07 | 2800 | 0.1464 | 14.1677 | | 0.0032 | 8.08 | 3200 | 0.1545 | 14.8170 | | 0.0013 | 9.09 | 3600 | 0.1623 | 13.8725 | | 0.0013 | 10.1 | 4000 | 0.1543 | 13.4002 | | 0.0006 | 11.11 | 4400 | 0.1653 | 14.1677 | | 0.0006 | 12.12 | 4800 | 0.1699 | 13.7544 | | 0.0003 | 13.13 | 5200 | 0.1705 | 13.4593 | | 0.0001 | 14.14 | 5600 | 0.1733 | 13.6954 | | 0.0002 | 15.15 | 6000 | 0.1768 | 13.8725 | | 0.0001 | 16.16 | 6400 | 0.1786 | 13.7544 | | 0.0 | 17.17 | 6800 | 0.1826 | 13.9906 | | 0.0 | 18.18 | 7200 | 0.1839 | 14.0496 | | 0.0 | 19.19 | 7600 | 0.1848 | 14.0496 | | 0.0 | 20.2 | 8000 | 0.1852 | 14.1086 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.13.2