--- base_model: meta-llama/CodeLlama-34b-Python-hf library_name: peft license: llama2 tags: - axolotl - generated_from_trainer model-index: - name: AcodellamaL4Scores results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/CodeLlama-34b-Python-hf model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: afrias5/JustScores type: alpaca field: text dataset_prepared_path: AJustScorescodellama val_set_size: 0.10 output_dir: models/AAcodellama34bL4Scores # lora_model_dir: models/codellamaL4Scores # auto_resume_from_checkpoints: true sequence_len: 4096 sample_packing: true pad_to_sequence_len: true eval_sample_packing: False adapter: lora lora_r: 4 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: - embed_tokens - lm_head wandb_project: 'codellamaScores' wandb_entity: wandb_watch: wandb_run_id: wandb_name: 'AA34bL4scores' #change wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: false hub_model_id: afrias5/AcodellamaL4Scores gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: false s2_attention: logging_steps: 1 warmup_steps: 10 # eval_steps: 300 saves_per_epoch: 1 save_total_limit: 12 evals_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: deepspeed: deepspeed_configs/zero3_bf16.json fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

[Visualize in Weights & Biases](https://wandb.ai/afrias5/codellamaScores/runs/smszd62j) # AcodellamaL4Scores This model is a fine-tuned version of [meta-llama/CodeLlama-34b-Python-hf](https://huggingface.co/meta-llama/CodeLlama-34b-Python-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0417 | 0.1053 | 1 | 1.8010 | | 0.5919 | 0.9474 | 9 | 0.2278 | | 0.0633 | 1.7895 | 18 | 0.0472 | | 0.0368 | 2.6842 | 27 | 0.0367 | | 0.0385 | 3.5526 | 36 | 0.0351 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.4 - Pytorch 2.2.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1