---
base_model: meta-llama/CodeLlama-70b-Python-hf
library_name: peft
license: llama2
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Acodellama70b
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: meta-llama/CodeLlama-70b-Python-hf
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: afrias5/FinUpTagsNoTestNoExNew
type: alpaca
field: text
dataset_prepared_path: AFinUpTagsNoTestNoExNewCodeLlama
val_set_size: 0
output_dir: models/Acodellama70bL4
lora_model_dir: models/Acodellama70bL4/checkpoint-44
auto_resume_from_checkpoints: true
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: False
adapter: lora
lora_r: 4
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: 'codellamaFeed'
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_name: 'A70bL4'
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 8
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
hub_model_id: afrias5/Acodellama70b
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
s2_attention:
logging_steps: 1
warmup_steps: 10
# eval_steps: 300
saves_per_epoch: 1
save_total_limit: 12
debug:
deepspeed:
weight_decay: 0.0
fsdp:
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp_config:
special_tokens:
bos_token: ""
eos_token: ""
unk_token: ""
```
[](https://wandb.ai/afrias5/codellamaFeed/runs/5vpimzij)
# Acodellama70b
This model is a fine-tuned version of [meta-llama/CodeLlama-70b-Python-hf](https://huggingface.co/meta-llama/CodeLlama-70b-Python-hf) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 8
### Training results
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.4
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1