--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-arsenic results: - task: name: Image Classification type: image-classification dataset: name: indian_food_images type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9993451211525868 --- # finetuned-arsenic This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset. It achieves the following results on the evaluation set: - Loss: 0.0048 - Accuracy: 0.9993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.1855 | 0.1848 | 100 | 0.1918 | 0.9312 | | 0.1792 | 0.3697 | 200 | 0.1740 | 0.9365 | | 0.1688 | 0.5545 | 300 | 0.0782 | 0.9692 | | 0.1238 | 0.7394 | 400 | 0.2158 | 0.9227 | | 0.0969 | 0.9242 | 500 | 0.0449 | 0.9843 | | 0.0326 | 1.1091 | 600 | 0.1554 | 0.9574 | | 0.1057 | 1.2939 | 700 | 0.0845 | 0.9738 | | 0.0805 | 1.4787 | 800 | 0.0712 | 0.9823 | | 0.0889 | 1.6636 | 900 | 0.0718 | 0.9797 | | 0.0503 | 1.8484 | 1000 | 0.0251 | 0.9935 | | 0.0225 | 2.0333 | 1100 | 0.0177 | 0.9967 | | 0.0049 | 2.2181 | 1200 | 0.0246 | 0.9921 | | 0.0152 | 2.4030 | 1300 | 0.0083 | 0.9987 | | 0.08 | 2.5878 | 1400 | 0.0214 | 0.9941 | | 0.0043 | 2.7726 | 1500 | 0.0069 | 0.9980 | | 0.0501 | 2.9575 | 1600 | 0.0151 | 0.9967 | | 0.0186 | 3.1423 | 1700 | 0.0078 | 0.9974 | | 0.0033 | 3.3272 | 1800 | 0.0139 | 0.9961 | | 0.0023 | 3.5120 | 1900 | 0.0076 | 0.9987 | | 0.0054 | 3.6969 | 2000 | 0.0048 | 0.9993 | | 0.0168 | 3.8817 | 2100 | 0.0066 | 0.9987 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1