--- license: llama3 library_name: peft tags: - trl - sft - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B-Instruct model-index: - name: results results: [] datasets: - medalpaca/medical_meadow_medical_flashcards - medalpaca/medical_meadow_wikidoc - medalpaca/medical_meadow_wikidoc_patient_information - medalpaca/medical_meadow_medqa - lavita/MedQuAD - Mreeb/Dermatology-Question-Answer-Dataset-For-Fine-Tuning language: - en --- # Llama-3-8B-Instruct-Medical-QLoRA This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the subset of given datasets. It achieves the following results on the evaluation set: - Loss: 1.1646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.217 | 0.0591 | 20 | 1.5876 | | 1.4821 | 0.1182 | 40 | 1.3649 | | 1.3217 | 0.1773 | 60 | 1.2501 | | 1.2392 | 0.2363 | 80 | 1.2201 | | 1.1963 | 0.2954 | 100 | 1.2075 | | 1.1829 | 0.3545 | 120 | 1.1997 | | 1.2229 | 0.4136 | 140 | 1.1917 | | 1.2016 | 0.4727 | 160 | 1.1868 | | 1.1753 | 0.5318 | 180 | 1.1831 | | 1.216 | 0.5908 | 200 | 1.1790 | | 1.1831 | 0.6499 | 220 | 1.1761 | | 1.1941 | 0.7090 | 240 | 1.1730 | | 1.2566 | 0.7681 | 260 | 1.1702 | | 1.1908 | 0.8272 | 280 | 1.1681 | | 1.1586 | 0.8863 | 300 | 1.1665 | | 1.1956 | 0.9453 | 320 | 1.1646 | ### Framework versions - PEFT 0.11.0 - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1