--- license: apache-2.0 base_model: projecte-aina/roberta-base-ca-v2-cased-te tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: AUTH_300524_epoch_4 results: [] --- # AUTH_300524_epoch_4 This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4656 - Accuracy: 0.9038 - Precision: 0.9047 - Recall: 0.9038 - F1: 0.9038 - Ratio: 0.4760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 47 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - lr_scheduler_warmup_steps: 4 - num_epochs: 1 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | 0.4294 | 0.0354 | 10 | 0.5003 | 0.9018 | 0.9020 | 0.9018 | 0.9018 | 0.5100 | | 0.386 | 0.0708 | 20 | 0.5308 | 0.8938 | 0.8952 | 0.8938 | 0.8937 | 0.4699 | | 0.4424 | 0.1062 | 30 | 0.4881 | 0.8998 | 0.9000 | 0.8998 | 0.8998 | 0.4900 | | 0.42 | 0.1416 | 40 | 0.4916 | 0.9068 | 0.9091 | 0.9068 | 0.9067 | 0.4629 | | 0.418 | 0.1770 | 50 | 0.4905 | 0.8968 | 0.8968 | 0.8968 | 0.8968 | 0.4950 | | 0.4402 | 0.2124 | 60 | 0.5034 | 0.8988 | 0.9027 | 0.8988 | 0.8986 | 0.4509 | | 0.4141 | 0.2478 | 70 | 0.5085 | 0.9028 | 0.9061 | 0.9028 | 0.9026 | 0.4549 | | 0.4836 | 0.2832 | 80 | 0.4875 | 0.9028 | 0.9029 | 0.9028 | 0.9028 | 0.4910 | | 0.4361 | 0.3186 | 90 | 0.4876 | 0.8998 | 0.8998 | 0.8998 | 0.8998 | 0.4980 | | 0.45 | 0.3540 | 100 | 0.4985 | 0.8938 | 0.8938 | 0.8938 | 0.8938 | 0.5040 | | 0.4648 | 0.3894 | 110 | 0.5236 | 0.8858 | 0.8954 | 0.8858 | 0.8851 | 0.4218 | | 0.4714 | 0.4248 | 120 | 0.5009 | 0.8888 | 0.8888 | 0.8888 | 0.8888 | 0.5010 | | 0.4628 | 0.4602 | 130 | 0.4971 | 0.8868 | 0.8871 | 0.8868 | 0.8867 | 0.4850 | | 0.4513 | 0.4956 | 140 | 0.4971 | 0.8968 | 0.9003 | 0.8968 | 0.8966 | 0.4529 | | 0.4905 | 0.5310 | 150 | 0.4873 | 0.8938 | 0.8969 | 0.8938 | 0.8936 | 0.4559 | | 0.4875 | 0.5664 | 160 | 0.4760 | 0.8948 | 0.8948 | 0.8948 | 0.8948 | 0.4950 | | 0.4593 | 0.6018 | 170 | 0.4818 | 0.8918 | 0.8918 | 0.8918 | 0.8918 | 0.4960 | | 0.403 | 0.6372 | 180 | 0.4927 | 0.8928 | 0.8936 | 0.8928 | 0.8927 | 0.4770 | | 0.4838 | 0.6726 | 190 | 0.5039 | 0.8958 | 0.9001 | 0.8958 | 0.8955 | 0.4479 | | 0.4512 | 0.7080 | 200 | 0.4913 | 0.8978 | 0.9009 | 0.8978 | 0.8976 | 0.4559 | | 0.4415 | 0.7434 | 210 | 0.4874 | 0.8988 | 0.8989 | 0.8988 | 0.8988 | 0.4930 | | 0.5317 | 0.7788 | 220 | 0.4786 | 0.9018 | 0.9021 | 0.9018 | 0.9018 | 0.4860 | | 0.4718 | 0.8142 | 230 | 0.4746 | 0.9008 | 0.9041 | 0.9008 | 0.9006 | 0.4549 | | 0.473 | 0.8496 | 240 | 0.4686 | 0.9028 | 0.9044 | 0.9028 | 0.9027 | 0.4689 | | 0.499 | 0.8850 | 250 | 0.4689 | 0.9028 | 0.9031 | 0.9028 | 0.9028 | 0.4870 | | 0.5655 | 0.9204 | 260 | 0.4661 | 0.9068 | 0.9074 | 0.9068 | 0.9068 | 0.4810 | | 0.4583 | 0.9558 | 270 | 0.4654 | 0.9048 | 0.9057 | 0.9048 | 0.9048 | 0.4770 | | 0.4734 | 0.9912 | 280 | 0.4656 | 0.9038 | 0.9047 | 0.9038 | 0.9038 | 0.4760 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1