--- license: apache-2.0 base_model: projecte-aina/roberta-base-ca-v2-cased-te tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: modelofinenew results: [] --- # modelofinenew This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2185 - Accuracy: 0.5126 - F1: 0.5338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 20 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:| | 1.9546 | 1.6129 | 50 | 2.5028 | 0.2101 | 0.2019 | | 1.7901 | 3.2258 | 100 | 2.6787 | 0.1849 | 0.1805 | | 1.6177 | 4.8387 | 150 | 2.3416 | 0.3445 | 0.3332 | | 1.2977 | 6.4516 | 200 | 2.0729 | 0.4202 | 0.4060 | | 0.9411 | 8.0645 | 250 | 1.9746 | 0.4706 | 0.4583 | | 0.595 | 9.6774 | 300 | 1.8840 | 0.5126 | 0.5167 | | 0.3374 | 11.2903 | 350 | 1.8955 | 0.4958 | 0.4977 | | 0.1974 | 12.9032 | 400 | 1.9658 | 0.5378 | 0.5169 | | 0.0981 | 14.5161 | 450 | 2.2185 | 0.5126 | 0.5338 | | 0.05 | 16.1290 | 500 | 2.3554 | 0.5042 | 0.5096 | | 0.0312 | 17.7419 | 550 | 2.4366 | 0.5294 | 0.5289 | | 0.0235 | 19.3548 | 600 | 2.5235 | 0.5210 | 0.5181 | | 0.0194 | 20.9677 | 650 | 2.5713 | 0.5294 | 0.5289 | | 0.0166 | 22.5806 | 700 | 2.6188 | 0.5294 | 0.5289 | | 0.0148 | 24.1935 | 750 | 2.6473 | 0.5294 | 0.5289 | | 0.0136 | 25.8065 | 800 | 2.6742 | 0.5210 | 0.5218 | | 0.013 | 27.4194 | 850 | 2.6920 | 0.5210 | 0.5218 | | 0.0129 | 29.0323 | 900 | 2.6961 | 0.5210 | 0.5218 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1