--- license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Vic_model2 results: [] --- # Vic_model2 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2487 - Accuracy: 0.9657 - Precision: 0.9663 - Recall: 0.9657 - F1: 0.9654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.8139 | 1.0 | 1313 | 0.6269 | 0.83 | 0.8370 | 0.8300 | 0.8242 | | 0.4671 | 2.0 | 2626 | 0.5028 | 0.8786 | 0.8837 | 0.8786 | 0.8757 | | 0.343 | 3.0 | 3939 | 0.4058 | 0.8957 | 0.9038 | 0.8957 | 0.8965 | | 0.222 | 4.0 | 5252 | 0.4109 | 0.9286 | 0.9295 | 0.9286 | 0.9274 | | 0.1237 | 5.0 | 6565 | 0.3822 | 0.9357 | 0.9387 | 0.9357 | 0.9354 | | 0.0629 | 6.0 | 7878 | 0.3639 | 0.9429 | 0.9459 | 0.9429 | 0.9433 | | 0.0186 | 7.0 | 9191 | 0.2977 | 0.9557 | 0.9567 | 0.9557 | 0.9555 | | 0.0104 | 8.0 | 10504 | 0.2487 | 0.9657 | 0.9663 | 0.9657 | 0.9654 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1