--- license: apache-2.0 base_model: projecte-aina/roberta-base-ca-v2-cased-te tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 080524_epoch_13 results: [] --- # 080524_epoch_13 This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8371 - Accuracy: 0.8151 - Precision: 0.8509 - Recall: 0.8151 - F1: 0.8103 - Ratio: 0.6597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 2 - seed: 47 - gradient_accumulation_steps: 2 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - lr_scheduler_warmup_steps: 4 - num_epochs: 1 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | 0.3002 | 0.1176 | 10 | 0.8662 | 0.8151 | 0.8509 | 0.8151 | 0.8103 | 0.6597 | | 0.3026 | 0.2353 | 20 | 0.7930 | 0.8277 | 0.8516 | 0.8277 | 0.8248 | 0.6303 | | 0.2933 | 0.3529 | 30 | 0.7946 | 0.8277 | 0.8484 | 0.8277 | 0.8251 | 0.6218 | | 0.2921 | 0.4706 | 40 | 0.8687 | 0.8151 | 0.8509 | 0.8151 | 0.8103 | 0.6597 | | 0.2947 | 0.5882 | 50 | 0.8540 | 0.8109 | 0.8442 | 0.8109 | 0.8062 | 0.6555 | | 0.3148 | 0.7059 | 60 | 0.8454 | 0.8151 | 0.8469 | 0.8151 | 0.8108 | 0.6513 | | 0.3221 | 0.8235 | 70 | 0.8642 | 0.8151 | 0.8509 | 0.8151 | 0.8103 | 0.6597 | | 0.316 | 0.9412 | 80 | 0.8389 | 0.8151 | 0.8509 | 0.8151 | 0.8103 | 0.6597 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1