--- license: apache-2.0 base_model: projecte-aina/roberta-base-ca-v2-cased-te tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 080524_epoch_3 results: [] --- # 080524_epoch_3 This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7190 - Accuracy: 0.8151 - Precision: 0.8431 - Recall: 0.8151 - F1: 0.8113 - Ratio: 0.6429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 2 - seed: 47 - gradient_accumulation_steps: 2 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - lr_scheduler_warmup_steps: 4 - num_epochs: 1 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | 0.4532 | 0.1176 | 10 | 0.6742 | 0.8193 | 0.8367 | 0.8193 | 0.8170 | 0.6134 | | 0.4299 | 0.2353 | 20 | 0.8276 | 0.7731 | 0.8079 | 0.7731 | 0.7665 | 0.6681 | | 0.4963 | 0.3529 | 30 | 0.7032 | 0.8235 | 0.8425 | 0.8235 | 0.8211 | 0.6176 | | 0.3726 | 0.4706 | 40 | 0.7220 | 0.8193 | 0.8395 | 0.8193 | 0.8166 | 0.6218 | | 0.3917 | 0.5882 | 50 | 0.8389 | 0.7941 | 0.8295 | 0.7941 | 0.7884 | 0.6639 | | 0.4565 | 0.7059 | 60 | 0.7085 | 0.8277 | 0.8429 | 0.8277 | 0.8258 | 0.6050 | | 0.4748 | 0.8235 | 70 | 0.6934 | 0.8109 | 0.8278 | 0.8109 | 0.8085 | 0.6134 | | 0.4813 | 0.9412 | 80 | 0.7157 | 0.8193 | 0.8426 | 0.8193 | 0.8162 | 0.6303 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1