--- library_name: sklearn tags: - sklearn - skops - tabular-regression model_format: pickle model_file: ubcv_grade_predictor_ridge.joblib widget: - structuredData: Campus: - UBCV Course: - 110 CourseLevel: - 1 Course_Avg_Roll_1y: - 73.5864074445 Course_Max_Last_3y: - 91.0 Course_Min_Last_3y: - 71.898305085 Course_Std_Last_3y: - 7.270712022509893 Prev_50-54: - 1.0 Prev_55-59: - 5.0 Prev_60-63: - 11.0 Prev_64-67: - 12.0 Prev_68-71: - 14.0 Prev_72-75: - 15.0 Prev_76-79: - 11.0 Prev_80-84: - 31.0 Prev_85-89: - 23.0 Prev_90-100: - 23.0 Prev_<50: - 31.0 Prev_High: - 97.0 Prev_Low: - 5.0 Prev_Median: - .nan Prev_Percentile (25): - .nan Prev_Percentile (75): - .nan Prof_Courses_Taught: - .nan Prof_Prev_50-54: - .nan Prof_Prev_55-59: - .nan Prof_Prev_60-63: - .nan Prof_Prev_64-67: - .nan Prof_Prev_68-71: - .nan Prof_Prev_72-75: - .nan Prof_Prev_76-79: - .nan Prof_Prev_80-84: - .nan Prof_Prev_85-89: - .nan Prof_Prev_90-100: - .nan Prof_Prev_<50: - .nan Prof_Prev_High: - .nan Prof_Prev_Low: - .nan Prof_Prev_Median: - .nan Prof_Prev_Percentile (25): - .nan Prof_Prev_Percentile (75): - .nan Professor: - '' Session: - W Subject: - CPSC SubjectCourse: - CPSC110 Year: - 2018 Years_Since_Start: - 4 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure [More Information Needed] ### Hyperparameters
Click to expand | Hyperparameter | Value | |----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------| | memory | | | steps | [('columntransformer', ColumnTransformer(transformers=[('pipeline-1',
Pipeline(steps=[('simpleimputer',
SimpleImputer()),
('standardscaler',
StandardScaler())]),
['Course_Avg_Roll_1y', 'Course_Min_Last_3y',
'Course_Max_Last_3y', 'Course_Std_Last_3y']),
('pipeline-2',
Pipeline(steps=[('simpleimputer',
SimpleImputer(strategy='most_frequent')),
('onehotencoder',
OneHotEncoder(drop='if_b...
SimpleImputer(strategy='most_frequent')),
('ordinalencoder',
OrdinalEncoder(handle_unknown='use_encoded_value',
unknown_value=-1))]),
['CourseLevel', 'Years_Since_Start',
'Prof_Courses_Taught', 'Year']),
('drop', 'drop',
['Reported', 'Section', 'Detail', 'Median',
'Percentile (25)', 'Percentile (75)', 'High',
'Low', '<50', '50-54', '55-59', '60-63',
'64-67', '68-71', '72-75', '76-79', '80-84',
'85-89', '90-100'])])), ('ridge', Ridge(alpha=2.091, random_state=42))] | | transform_input | | | verbose | False | | columntransformer | ColumnTransformer(transformers=[('pipeline-1',
Pipeline(steps=[('simpleimputer',
SimpleImputer()),
('standardscaler',
StandardScaler())]),
['Course_Avg_Roll_1y', 'Course_Min_Last_3y',
'Course_Max_Last_3y', 'Course_Std_Last_3y']),
('pipeline-2',
Pipeline(steps=[('simpleimputer',
SimpleImputer(strategy='most_frequent')),
('onehotencoder',
OneHotEncoder(drop='if_b...
SimpleImputer(strategy='most_frequent')),
('ordinalencoder',
OrdinalEncoder(handle_unknown='use_encoded_value',
unknown_value=-1))]),
['CourseLevel', 'Years_Since_Start',
'Prof_Courses_Taught', 'Year']),
('drop', 'drop',
['Reported', 'Section', 'Detail', 'Median',
'Percentile (25)', 'Percentile (75)', 'High',
'Low', '<50', '50-54', '55-59', '60-63',
'64-67', '68-71', '72-75', '76-79', '80-84',
'85-89', '90-100'])]) | | ridge | Ridge(alpha=2.091, random_state=42) | | columntransformer__force_int_remainder_cols | True | | columntransformer__n_jobs | | | columntransformer__remainder | drop | | columntransformer__sparse_threshold | 0.3 | | columntransformer__transformer_weights | | | columntransformer__transformers | [('pipeline-1', Pipeline(steps=[('simpleimputer', SimpleImputer()),
('standardscaler', StandardScaler())]), ['Course_Avg_Roll_1y', 'Course_Min_Last_3y', 'Course_Max_Last_3y', 'Course_Std_Last_3y']), ('pipeline-2', Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),
('onehotencoder',
OneHotEncoder(drop='if_binary', handle_unknown='ignore'))]), ['Campus', 'Session', 'SubjectCourse', 'Professor', 'Subject']), ('pipeline-3', Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),
('ordinalencoder',
OrdinalEncoder(handle_unknown='use_encoded_value',
unknown_value=-1))]), ['CourseLevel', 'Years_Since_Start', 'Prof_Courses_Taught', 'Year']), ('drop', 'drop', ['Reported', 'Section', 'Detail', 'Median', 'Percentile (25)', 'Percentile (75)', 'High', 'Low', '<50', '50-54', '55-59', '60-63', '64-67', '68-71', '72-75', '76-79', '80-84', '85-89', '90-100'])] | | columntransformer__verbose | False | | columntransformer__verbose_feature_names_out | True | | columntransformer__pipeline-1 | Pipeline(steps=[('simpleimputer', SimpleImputer()),
('standardscaler', StandardScaler())]) | | columntransformer__pipeline-2 | Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),
('onehotencoder',
OneHotEncoder(drop='if_binary', handle_unknown='ignore'))]) | | columntransformer__pipeline-3 | Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),
('ordinalencoder',
OrdinalEncoder(handle_unknown='use_encoded_value',
unknown_value=-1))]) | | columntransformer__drop | drop | | columntransformer__pipeline-1__memory | | | columntransformer__pipeline-1__steps | [('simpleimputer', SimpleImputer()), ('standardscaler', StandardScaler())] | | columntransformer__pipeline-1__transform_input | | | columntransformer__pipeline-1__verbose | False | | columntransformer__pipeline-1__simpleimputer | SimpleImputer() | | columntransformer__pipeline-1__standardscaler | StandardScaler() | | columntransformer__pipeline-1__simpleimputer__add_indicator | False | | columntransformer__pipeline-1__simpleimputer__copy | True | | columntransformer__pipeline-1__simpleimputer__fill_value | | | columntransformer__pipeline-1__simpleimputer__keep_empty_features | False | | columntransformer__pipeline-1__simpleimputer__missing_values | nan | | columntransformer__pipeline-1__simpleimputer__strategy | mean | | columntransformer__pipeline-1__standardscaler__copy | True | | columntransformer__pipeline-1__standardscaler__with_mean | True | | columntransformer__pipeline-1__standardscaler__with_std | True | | columntransformer__pipeline-2__memory | | | columntransformer__pipeline-2__steps | [('simpleimputer', SimpleImputer(strategy='most_frequent')), ('onehotencoder', OneHotEncoder(drop='if_binary', handle_unknown='ignore'))] | | columntransformer__pipeline-2__transform_input | | | columntransformer__pipeline-2__verbose | False | | columntransformer__pipeline-2__simpleimputer | SimpleImputer(strategy='most_frequent') | | columntransformer__pipeline-2__onehotencoder | OneHotEncoder(drop='if_binary', handle_unknown='ignore') | | columntransformer__pipeline-2__simpleimputer__add_indicator | False | | columntransformer__pipeline-2__simpleimputer__copy | True | | columntransformer__pipeline-2__simpleimputer__fill_value | | | columntransformer__pipeline-2__simpleimputer__keep_empty_features | False | | columntransformer__pipeline-2__simpleimputer__missing_values | nan | | columntransformer__pipeline-2__simpleimputer__strategy | most_frequent | | columntransformer__pipeline-2__onehotencoder__categories | auto | | columntransformer__pipeline-2__onehotencoder__drop | if_binary | | columntransformer__pipeline-2__onehotencoder__dtype | | | columntransformer__pipeline-2__onehotencoder__feature_name_combiner | concat | | columntransformer__pipeline-2__onehotencoder__handle_unknown | ignore | | columntransformer__pipeline-2__onehotencoder__max_categories | | | columntransformer__pipeline-2__onehotencoder__min_frequency | | | columntransformer__pipeline-2__onehotencoder__sparse_output | True | | columntransformer__pipeline-3__memory | | | columntransformer__pipeline-3__steps | [('simpleimputer', SimpleImputer(strategy='most_frequent')), ('ordinalencoder', OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1))] | | columntransformer__pipeline-3__transform_input | | | columntransformer__pipeline-3__verbose | False | | columntransformer__pipeline-3__simpleimputer | SimpleImputer(strategy='most_frequent') | | columntransformer__pipeline-3__ordinalencoder | OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1) | | columntransformer__pipeline-3__simpleimputer__add_indicator | False | | columntransformer__pipeline-3__simpleimputer__copy | True | | columntransformer__pipeline-3__simpleimputer__fill_value | | | columntransformer__pipeline-3__simpleimputer__keep_empty_features | False | | columntransformer__pipeline-3__simpleimputer__missing_values | nan | | columntransformer__pipeline-3__simpleimputer__strategy | most_frequent | | columntransformer__pipeline-3__ordinalencoder__categories | auto | | columntransformer__pipeline-3__ordinalencoder__dtype | | | columntransformer__pipeline-3__ordinalencoder__encoded_missing_value | nan | | columntransformer__pipeline-3__ordinalencoder__handle_unknown | use_encoded_value | | columntransformer__pipeline-3__ordinalencoder__max_categories | | | columntransformer__pipeline-3__ordinalencoder__min_frequency | | | columntransformer__pipeline-3__ordinalencoder__unknown_value | -1 | | ridge__alpha | 2.091 | | ridge__copy_X | True | | ridge__fit_intercept | True | | ridge__max_iter | | | ridge__positive | False | | ridge__random_state | 42 | | ridge__solver | auto | | ridge__tol | 0.0001 |
### Model Plot
Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('pipeline-1',Pipeline(steps=[('simpleimputer',SimpleImputer()),('standardscaler',StandardScaler())]),['Course_Avg_Roll_1y','Course_Min_Last_3y','Course_Max_Last_3y','Course_Std_Last_3y']),('pipeline-2',Pipeline(steps=[('simpleimputer',SimpleImputer(strategy='most_frequent')),('on...OrdinalEncoder(handle_unknown='use_encoded_value',unknown_value=-1))]),['CourseLevel','Years_Since_Start','Prof_Courses_Taught','Year']),('drop', 'drop',['Reported', 'Section','Detail', 'Median','Percentile (25)','Percentile (75)', 'High','Low', '<50', '50-54','55-59', '60-63', '64-67','68-71', '72-75', '76-79','80-84', '85-89','90-100'])])),('ridge', Ridge(alpha=2.091, random_state=42))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
## Evaluation Results [More Information Needed] # How to Get Started with the Model [More Information Needed] # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```