--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-med-LoRA_r256_a128 results: [] --- # whisper-med-LoRA_r256_a128 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2540 - Wer: 11.7332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.668 | 1.0 | 2801 | 0.3934 | 16.5106 | | 0.3058 | 2.0 | 5602 | 0.3089 | 13.8926 | | 0.2528 | 3.0 | 8403 | 0.2773 | 12.0390 | | 0.2256 | 4.0 | 11204 | 0.2583 | 11.6568 | | 0.2106 | 5.0 | 14005 | 0.2540 | 11.7332 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3