from typing import Any from transformers import AutoTokenizer, PreTrainedTokenizerBase NUM_SENTINEL_TOKENS: int = 100 def adapt_tokenizer_for_denoising(tokenizer: PreTrainedTokenizerBase): """Adds sentinel tokens and padding token (if missing). Expands the tokenizer vocabulary to include sentinel tokens used in mixture-of-denoiser tasks as well as a padding token. All added tokens are added as special tokens. No tokens are added if sentinel tokens and padding token already exist. """ sentinels_to_add = [f'' for i in range(NUM_SENTINEL_TOKENS)] tokenizer.add_tokens(sentinels_to_add, special_tokens=True) if tokenizer.pad_token is None: tokenizer.add_tokens('', special_tokens=True) tokenizer.pad_token = '' assert tokenizer.pad_token_id is not None sentinels = ''.join([f'' for i in range(NUM_SENTINEL_TOKENS)]) _sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids tokenizer.sentinel_token_ids = _sentinel_token_ids class AutoTokenizerForMOD(AutoTokenizer): """AutoTokenizer + Adaptation for MOD. A simple wrapper around AutoTokenizer to make instantiating an MOD-adapted tokenizer a bit easier. MOD-adapted tokenizers have sentinel tokens (e.g., ), a padding token, and a property to get the token ids of the sentinel tokens. """ @classmethod def from_pretrained(cls, *args: Any, **kwargs: Any): """See `AutoTokenizer.from_pretrained` docstring.""" tokenizer = super().from_pretrained(*args, **kwargs) adapt_tokenizer_for_denoising(tokenizer) return tokenizer