--- library_name: transformers license: mit base_model: emilyalsentzer/Bio_ClinicalBERT tags: - generated_from_trainer datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: ncbi_disease type: ncbi_disease config: ncbi_disease split: validation args: ncbi_disease metrics: - name: Precision type: precision value: 0.8116805721096544 - name: Recall type: recall value: 0.8653113087674714 - name: F1 type: f1 value: 0.8376383763837638 - name: Accuracy type: accuracy value: 0.9840282291763395 --- # bert-finetuned-ner This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.0621 - Precision: 0.8117 - Recall: 0.8653 - F1: 0.8376 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1181 | 1.0 | 680 | 0.0523 | 0.7339 | 0.8272 | 0.7778 | 0.9824 | | 0.0386 | 2.0 | 1360 | 0.0554 | 0.8112 | 0.8463 | 0.8284 | 0.9838 | | 0.0145 | 3.0 | 2040 | 0.0621 | 0.8117 | 0.8653 | 0.8376 | 0.9840 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1