adigo commited on
Commit
7011161
1 Parent(s): b98ef72

Training complete

Browse files
README.md CHANGED
@@ -26,16 +26,16 @@ model-index:
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.8033573141486811
30
  - name: Recall
31
  type: recall
32
- value: 0.8513341804320204
33
  - name: F1
34
  type: f1
35
- value: 0.8266502159161011
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9835329804686291
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
45
 
46
  This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the ncbi_disease dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0626
49
- - Precision: 0.8034
50
- - Recall: 0.8513
51
- - F1: 0.8267
52
- - Accuracy: 0.9835
53
 
54
  ## Model description
55
 
@@ -80,9 +80,9 @@ The following hyperparameters were used during training:
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | 0.1245 | 1.0 | 680 | 0.0536 | 0.7295 | 0.8158 | 0.7702 | 0.9814 |
84
- | 0.0392 | 2.0 | 1360 | 0.0551 | 0.7907 | 0.8399 | 0.8145 | 0.9831 |
85
- | 0.0155 | 3.0 | 2040 | 0.0626 | 0.8034 | 0.8513 | 0.8267 | 0.9835 |
86
 
87
 
88
  ### Framework versions
 
26
  metrics:
27
  - name: Precision
28
  type: precision
29
+ value: 0.8066825775656324
30
  - name: Recall
31
  type: recall
32
+ value: 0.8589580686149937
33
  - name: F1
34
  type: f1
35
+ value: 0.832
36
  - name: Accuracy
37
  type: accuracy
38
+ value: 0.9839353700436438
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
45
 
46
  This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the ncbi_disease dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.0612
49
+ - Precision: 0.8067
50
+ - Recall: 0.8590
51
+ - F1: 0.832
52
+ - Accuracy: 0.9839
53
 
54
  ## Model description
55
 
 
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 0.1242 | 1.0 | 680 | 0.0521 | 0.7460 | 0.8399 | 0.7902 | 0.9825 |
84
+ | 0.039 | 2.0 | 1360 | 0.0515 | 0.7891 | 0.8463 | 0.8167 | 0.9835 |
85
+ | 0.0144 | 3.0 | 2040 | 0.0612 | 0.8067 | 0.8590 | 0.832 | 0.9839 |
86
 
87
 
88
  ### Framework versions
runs/Sep16_23-36-10_0a40eaa23cc0/events.out.tfevents.1726529774.0a40eaa23cc0.443.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3a6359232f921610a1827050435d62cdf4016f067eed2686dd4c92999d2b1af5
3
- size 6770
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ffe10ba42216802432e0843019b7f52b2d5e7e1ac30da86c66d818d4b6acb7c
3
+ size 7596