--- library_name: transformers base_model: huawei-noah/TinyBERT_General_4L_312D tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: TinyBERT-finetuned-NER results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.8117213736323259 - name: Recall type: recall value: 0.8382369392549502 - name: F1 type: f1 value: 0.8247660979636764 - name: Accuracy type: accuracy value: 0.9613166632246175 --- # TinyBERT-finetuned-NER This model is a fine-tuned version of [huawei-noah/TinyBERT_General_4L_312D](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1547 - Precision: 0.8117 - Recall: 0.8382 - F1: 0.8248 - Accuracy: 0.9613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5069 | 1.0 | 878 | 0.2184 | 0.7396 | 0.7742 | 0.7565 | 0.9481 | | 0.2068 | 2.0 | 1756 | 0.1667 | 0.8115 | 0.8201 | 0.8158 | 0.9593 | | 0.166 | 3.0 | 2634 | 0.1547 | 0.8117 | 0.8382 | 0.8248 | 0.9613 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1