--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.1893 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9486 | 1.0 | 225 | 1.8744 | 0.54 | | 1.0616 | 2.0 | 450 | 1.2196 | 0.66 | | 1.0193 | 3.0 | 675 | 0.7841 | 0.78 | | 0.81 | 4.0 | 900 | 0.7212 | 0.8 | | 0.2171 | 5.0 | 1125 | 0.7194 | 0.77 | | 0.0458 | 6.0 | 1350 | 0.8966 | 0.81 | | 0.3485 | 7.0 | 1575 | 0.7960 | 0.81 | | 0.09 | 8.0 | 1800 | 1.0860 | 0.82 | | 0.0031 | 9.0 | 2025 | 0.7744 | 0.84 | | 0.0026 | 10.0 | 2250 | 0.8249 | 0.87 | | 0.0032 | 11.0 | 2475 | 1.0680 | 0.84 | | 0.0012 | 12.0 | 2700 | 1.0724 | 0.83 | | 0.0011 | 13.0 | 2925 | 1.1407 | 0.83 | | 0.0009 | 14.0 | 3150 | 1.0395 | 0.85 | | 0.0007 | 15.0 | 3375 | 1.2991 | 0.83 | | 0.0006 | 16.0 | 3600 | 1.1403 | 0.83 | | 0.0007 | 17.0 | 3825 | 1.0837 | 0.83 | | 0.0005 | 18.0 | 4050 | 1.1463 | 0.83 | | 0.0005 | 19.0 | 4275 | 1.1987 | 0.83 | | 0.0005 | 20.0 | 4500 | 1.1893 | 0.83 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4.dev0 - Tokenizers 0.13.3