--- license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: 20240327180901_small_aristotle results: [] --- # 20240327180901_small_aristotle This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0420 - Precision: 0.9363 - Recall: 0.9327 - F1: 0.9345 - Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 69 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 350 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0814 | 0.09 | 300 | 0.0729 | 0.8736 | 0.8780 | 0.8758 | 0.9714 | | 0.0809 | 0.18 | 600 | 0.0717 | 0.8918 | 0.8569 | 0.8740 | 0.9719 | | 0.0762 | 0.27 | 900 | 0.0698 | 0.8943 | 0.8648 | 0.8793 | 0.9728 | | 0.0769 | 0.36 | 1200 | 0.0681 | 0.8922 | 0.8759 | 0.8840 | 0.9736 | | 0.0755 | 0.44 | 1500 | 0.0683 | 0.8918 | 0.8804 | 0.8861 | 0.9740 | | 0.0743 | 0.53 | 1800 | 0.0665 | 0.8954 | 0.8801 | 0.8877 | 0.9746 | | 0.0727 | 0.62 | 2100 | 0.0660 | 0.9028 | 0.8696 | 0.8859 | 0.9744 | | 0.0729 | 0.71 | 2400 | 0.0669 | 0.8986 | 0.8749 | 0.8866 | 0.9744 | | 0.071 | 0.8 | 2700 | 0.0649 | 0.8943 | 0.8859 | 0.8901 | 0.9751 | | 0.069 | 0.89 | 3000 | 0.0635 | 0.8981 | 0.8875 | 0.8928 | 0.9756 | | 0.0696 | 0.98 | 3300 | 0.0639 | 0.8929 | 0.8938 | 0.8934 | 0.9757 | | 0.0629 | 1.07 | 3600 | 0.0621 | 0.9004 | 0.8914 | 0.8959 | 0.9763 | | 0.0647 | 1.16 | 3900 | 0.0641 | 0.8972 | 0.8925 | 0.8948 | 0.9760 | | 0.0628 | 1.25 | 4200 | 0.0610 | 0.9023 | 0.8933 | 0.8978 | 0.9768 | | 0.063 | 1.33 | 4500 | 0.0601 | 0.9061 | 0.8907 | 0.8983 | 0.9770 | | 0.0621 | 1.42 | 4800 | 0.0607 | 0.9082 | 0.8856 | 0.8968 | 0.9768 | | 0.0619 | 1.51 | 5100 | 0.0604 | 0.9067 | 0.8898 | 0.8982 | 0.9770 | | 0.0612 | 1.6 | 5400 | 0.0575 | 0.9098 | 0.8940 | 0.9018 | 0.9779 | | 0.0599 | 1.69 | 5700 | 0.0568 | 0.9089 | 0.8972 | 0.9030 | 0.9781 | | 0.0602 | 1.78 | 6000 | 0.0566 | 0.9110 | 0.8990 | 0.9049 | 0.9785 | | 0.0596 | 1.87 | 6300 | 0.0557 | 0.9125 | 0.9004 | 0.9064 | 0.9788 | | 0.0581 | 1.96 | 6600 | 0.0544 | 0.9147 | 0.9010 | 0.9078 | 0.9792 | | 0.0516 | 2.05 | 6900 | 0.0562 | 0.9157 | 0.9 | 0.9078 | 0.9791 | | 0.0516 | 2.13 | 7200 | 0.0547 | 0.9143 | 0.9039 | 0.9090 | 0.9793 | | 0.0513 | 2.22 | 7500 | 0.0532 | 0.9131 | 0.9101 | 0.9116 | 0.9799 | | 0.0514 | 2.31 | 7800 | 0.0524 | 0.9156 | 0.9106 | 0.9131 | 0.9803 | | 0.0505 | 2.4 | 8100 | 0.0523 | 0.9215 | 0.9067 | 0.9140 | 0.9806 | | 0.0507 | 2.49 | 8400 | 0.0517 | 0.9193 | 0.9103 | 0.9148 | 0.9807 | | 0.0496 | 2.58 | 8700 | 0.0502 | 0.9225 | 0.9094 | 0.9159 | 0.9810 | | 0.0493 | 2.67 | 9000 | 0.0504 | 0.9240 | 0.9069 | 0.9153 | 0.9809 | | 0.0489 | 2.76 | 9300 | 0.0490 | 0.9249 | 0.9107 | 0.9177 | 0.9815 | | 0.048 | 2.85 | 9600 | 0.0487 | 0.9220 | 0.9173 | 0.9197 | 0.9817 | | 0.0477 | 2.94 | 9900 | 0.0478 | 0.9220 | 0.9180 | 0.9200 | 0.9818 | | 0.0391 | 3.02 | 10200 | 0.0479 | 0.9269 | 0.9162 | 0.9215 | 0.9823 | | 0.0394 | 3.11 | 10500 | 0.0472 | 0.9267 | 0.9182 | 0.9224 | 0.9824 | | 0.0398 | 3.2 | 10800 | 0.0476 | 0.9260 | 0.9188 | 0.9224 | 0.9824 | | 0.04 | 3.29 | 11100 | 0.0470 | 0.9269 | 0.9198 | 0.9233 | 0.9826 | | 0.0389 | 3.38 | 11400 | 0.0461 | 0.9262 | 0.9239 | 0.9251 | 0.9830 | | 0.0387 | 3.47 | 11700 | 0.0456 | 0.9282 | 0.9247 | 0.9265 | 0.9833 | | 0.0387 | 3.56 | 12000 | 0.0463 | 0.9302 | 0.9219 | 0.9261 | 0.9832 | | 0.0378 | 3.65 | 12300 | 0.0448 | 0.9291 | 0.9252 | 0.9272 | 0.9834 | | 0.0372 | 3.74 | 12600 | 0.0447 | 0.9328 | 0.9207 | 0.9267 | 0.9835 | | 0.0372 | 3.83 | 12900 | 0.0434 | 0.9311 | 0.9264 | 0.9287 | 0.9838 | | 0.0365 | 3.91 | 13200 | 0.0436 | 0.9335 | 0.9234 | 0.9285 | 0.9839 | | 0.0345 | 4.0 | 13500 | 0.0456 | 0.9327 | 0.9282 | 0.9304 | 0.9841 | | 0.0288 | 4.09 | 13800 | 0.0455 | 0.9324 | 0.9293 | 0.9308 | 0.9843 | | 0.0289 | 4.18 | 14100 | 0.0448 | 0.9329 | 0.9283 | 0.9306 | 0.9842 | | 0.0288 | 4.27 | 14400 | 0.0443 | 0.9335 | 0.9307 | 0.9321 | 0.9844 | | 0.0288 | 4.36 | 14700 | 0.0441 | 0.9349 | 0.9309 | 0.9329 | 0.9847 | | 0.028 | 4.45 | 15000 | 0.0433 | 0.9342 | 0.9308 | 0.9325 | 0.9846 | | 0.0275 | 4.54 | 15300 | 0.0436 | 0.9363 | 0.9306 | 0.9335 | 0.9848 | | 0.028 | 4.63 | 15600 | 0.0432 | 0.9357 | 0.9317 | 0.9337 | 0.9849 | | 0.0279 | 4.71 | 15900 | 0.0430 | 0.9351 | 0.9305 | 0.9328 | 0.9847 | | 0.0268 | 4.8 | 16200 | 0.0426 | 0.9371 | 0.9315 | 0.9343 | 0.9850 | | 0.0274 | 4.89 | 16500 | 0.0421 | 0.9359 | 0.9334 | 0.9347 | 0.9851 | | 0.0262 | 4.98 | 16800 | 0.0420 | 0.9363 | 0.9327 | 0.9345 | 0.9851 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.0a0+6a974be - Datasets 2.18.0 - Tokenizers 0.15.2