This is the code used to create this model ```python import torch import diffusers model = diffusers.UNet2DConditionModel( block_out_channels=(4, 4, 4), down_block_types=('CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D'), norm_num_groups=2, cross_attention_dim=2, layers_per_block=1, attention_head_dim=2, addition_embed_type_num_heads=2, ) # noisy latent x = torch.randn(7,4,33,33) # timestep t = torch.Tensor([1.0]) # conditioning embed z = torch.randn(7, 4, 2) # denoised latent y = model(x, t, z) ```