--- library_name: peft tags: - generated_from_trainer model-index: - name: qlora-yi-34b-200k-rawrr-2 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: ./yi-34b-200k-llamafied base_model_config: ./yi-34b-200k-llamafied model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: false is_llama_derived_model: true load_in_8bit: false load_in_4bit: true bnb_config_kwargs: llm_int8_has_fp16_weight: false bnb_4bit_quant_type: nf4 bnb_4bit_use_double_quant: true bnb_4bit_compute_dtype: torch.bfloat16 torch_dtype: bf16 strict: false rl: true datasets: - path: /run/media/.../axolotl/datasets/rawrr_v1/ split: train type: apply_chatml dataset_prepared_path: last_run_prepared val_set_size: 0.01 adapter: qlora lora_model_dir: sequence_len: 200 sample_packing: false lora_r: 4 lora_alpha: 8 lora_dropout: 0.05 lora_target_modules: - q_proj - v_proj - k_proj - o_proj - gate_proj - down_proj - up_proj lora_fan_in_fan_out: wandb_project: wandb_watch: wandb_run_id: wandb_log_model: output_dir: ./qlora-yi-34b-200k-rawrr-2 pad_to_sequence_len: true micro_batch_size: 1 gradient_accumulation_steps: 16 num_epochs: 1 optimizer: adamw_bnb_8bit torchdistx_path: lr_scheduler: cosine learning_rate: 0.00003 cosine_min_lr_ratio: 0.2 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false bfloat16: true flash_optimum: false gradient_checkpointing: true early_stopping_patience: save_safetensors: local_rank: logging_steps: 1 xformers_attention: flash_attention: true deepspeed: seed: 42 warmup_steps: 100 eval_steps: 5000000 save_steps: 80 save_total_limit: 10 eval_table_size: eval_table_max_new_tokens: debug: weight_decay: fsdp: fsdp_config: special_tokens: bos_token: "<|startoftext|>" eos_token: "<|endoftext|>" unk_token: "" ```

# qlora-yi-34b-200k-rawrr-2 Yi-34B-200K trained via DPO on rawrr_v1 dataset. Sequence length of just 200, that's the max I could fit in with axolotl on RTX 3090 Ti. ## Model description Looks like DPO worked, even despite being a tiny rank, sequence length and learning rate. \ That's great, I was preparing to start fine-tuning in the cloud but I saw [this](https://github.com/OpenAccess-AI-Collective/axolotl/pull/1060) pull request and I was hopeful it would allow me to squeeze in 34B qlora DPO on 24GB of VRAM. And it did! ## Intended uses & limitations merge it with yi-34b-200k llama-fied to get a more raw-feeling Yi 34B. In my initial testing on comparison between exl2 4.65bpw base and my DPO fine-tune, my model has no AALM refusals and feels moreso like a true base model. \ Some instruct training still shines through though when you ask it to make an itinerary etc for you. ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 517 ### Training results ### Framework versions - PEFT 0.7.0 - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0