--- license: apache-2.0 base_model: facebook/bart-large tags: - generated_from_trainer model-index: - name: bart-finetuned-lyrlen-512 results: [] --- # bart-finetuned-lyrlen-512 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.221 | 0.04 | 500 | 1.9667 | | 2.0336 | 0.08 | 1000 | 1.8762 | | 1.9563 | 0.12 | 1500 | 1.8565 | | 1.9555 | 0.17 | 2000 | 1.8392 | | 1.9072 | 0.21 | 2500 | 1.8214 | | 1.8796 | 0.25 | 3000 | 1.8246 | | 1.8955 | 0.29 | 3500 | 1.8050 | | 1.8254 | 0.33 | 4000 | 1.8069 | | 1.8518 | 0.38 | 4500 | 1.7873 | | 1.8471 | 0.42 | 5000 | 1.7880 | | 1.8536 | 0.46 | 5500 | 1.7736 | | 1.8075 | 0.5 | 6000 | 1.7772 | | 1.8143 | 0.54 | 6500 | 1.7724 | | 1.8383 | 0.58 | 7000 | 1.7670 | | 1.746 | 0.62 | 7500 | 1.7741 | | 1.7844 | 0.67 | 8000 | 1.7608 | | 1.7761 | 0.71 | 8500 | 1.7680 | | 1.7367 | 0.75 | 9000 | 1.7555 | | 1.7656 | 0.79 | 9500 | 1.7508 | | 1.7467 | 0.83 | 10000 | 1.7558 | | 1.7744 | 0.88 | 10500 | 1.7449 | | 1.7513 | 0.92 | 11000 | 1.7462 | | 1.7482 | 0.96 | 11500 | 1.7576 | | 1.724 | 1.0 | 12000 | 1.7525 | | 1.7043 | 1.04 | 12500 | 1.7746 | | 1.6869 | 1.08 | 13000 | 1.7531 | | 1.7405 | 1.12 | 13500 | 1.7473 | | 1.7343 | 1.17 | 14000 | 1.7396 | | 1.649 | 1.21 | 14500 | 1.7384 | | 1.7208 | 1.25 | 15000 | 1.7368 | | 1.6931 | 1.29 | 15500 | 1.7404 | | 1.5941 | 1.33 | 16000 | 1.8223 | | 1.6651 | 1.38 | 16500 | 1.7287 | | 1.6649 | 1.42 | 17000 | 1.7413 | | 1.7108 | 1.46 | 17500 | 1.7304 | | 1.713 | 1.5 | 18000 | 1.7263 | | 1.6866 | 1.54 | 18500 | 1.7139 | | 1.6461 | 1.58 | 19000 | 1.7221 | | 1.6886 | 1.62 | 19500 | 1.7159 | | 1.6511 | 1.67 | 20000 | 1.7302 | | 1.6626 | 1.71 | 20500 | 1.7182 | | 1.7052 | 1.75 | 21000 | 1.7163 | | 1.6831 | 1.79 | 21500 | 1.7168 | | 1.6057 | 1.83 | 22000 | 1.7151 | | 1.6761 | 1.88 | 22500 | 1.7117 | | 1.6668 | 1.92 | 23000 | 1.7164 | | 1.612 | 1.96 | 23500 | 1.7122 | | 1.6617 | 2.0 | 24000 | 1.7131 | | 1.641 | 2.04 | 24500 | 1.7277 | | 1.6595 | 2.08 | 25000 | 1.7289 | | 1.6723 | 2.12 | 25500 | 1.7192 | | 1.6347 | 2.17 | 26000 | 1.7259 | | 1.6684 | 2.21 | 26500 | 1.7211 | | 1.6098 | 2.25 | 27000 | 1.7316 | | 1.6025 | 2.29 | 27500 | 1.7213 | | 1.5567 | 2.33 | 28000 | 1.7238 | | 1.6564 | 2.38 | 28500 | 1.7185 | | 1.7078 | 2.42 | 29000 | 1.7393 | | 1.6308 | 2.46 | 29500 | 1.7234 | | 1.6402 | 2.5 | 30000 | 1.7319 | | 1.6333 | 2.54 | 30500 | 1.7197 | | 1.6249 | 2.58 | 31000 | 1.7298 | | 1.6366 | 2.62 | 31500 | 1.7235 | | 1.6245 | 2.67 | 32000 | 1.7289 | | 1.6044 | 2.71 | 32500 | 1.7160 | | 1.6095 | 2.75 | 33000 | 1.7172 | | 1.6621 | 2.79 | 33500 | 1.7210 | | 1.6883 | 2.83 | 34000 | 1.7169 | | 1.6449 | 2.88 | 34500 | 1.7155 | | 1.6439 | 2.92 | 35000 | 1.7201 | | 1.6358 | 2.96 | 35500 | 1.7188 | | 1.6033 | 3.0 | 36000 | 1.7206 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.0.dev20230621+cu117 - Datasets 2.18.0 - Tokenizers 0.15.2