#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys import argparse import numpy as np import tritonclient.grpc as grpcclient from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score def make_prediction(model_server, model_name, model_version, verbose): try: triton_client = grpcclient.InferenceServerClient(url=model_server, verbose=verbose) except Exception as e: print("channel creation failed: " + str(e)) sys.exit(1) # Infer inputs = [] outputs = [] # Load the California Housing dataset dataset = load_iris() X, y = dataset.data, dataset.target # Split the dataset into training and testing sets _, X_test, _, y_test = train_test_split(X, y, test_size=0.25, random_state=0) input_data = X_test.astype(np.float32) input_label = y_test.astype(np.float32) print(f'input_data:\n{input_data[0]}') print(f'input_label:\n{input_label[0]}') # input_data = np.expand_dims(input_data, axis=0) # Initialize the data inputs.append(grpcclient.InferInput('float_input', [input_data.shape[0], input_data.shape[1]], "FP32")) inputs[0].set_data_from_numpy(input_data) outputs.append(grpcclient.InferRequestedOutput('label')) outputs.append(grpcclient.InferRequestedOutput('probabilities')) # Test with outputs results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs) # print("response:\n", results.get_response()) statistics = triton_client.get_inference_statistics(model_name=model_name) # print("statistics:\n", statistics) if len(statistics.model_stats) != 1: print("FAILED: Inference Statistics") sys.exit(1) # Get the output arrays from the results y_pred = results.as_numpy('label').squeeze() y_prob = results.as_numpy('probabilities').squeeze() print(f"y_pred:\n{y_pred[0]}") print(f"y_prob:\n{y_prob[0]}") acc = accuracy_score(y_test, y_pred) print(f'Accuracy classification score: {acc}') """ python client.py --model_server localhost:8001 --model_name gaussian_nb --model_version 1 """ if __name__ == "__main__": parser = argparse.ArgumentParser(description="Make predictions using a specific model.") parser.add_argument("--model_server", default="localhost:8001", help="The address of the model server.") parser.add_argument("--model_name", default="gaussian_nb", help="The name of the model to use.") parser.add_argument("--model_version", default="1", help="The version of the model to use.") parser.add_argument("--verbose", action="store_true", required=False, default=False, help='Enable verbose output') args = parser.parse_args() make_prediction(args.model_server, args.model_name, args.model_version, args.verbose)