#!/usr/bin/env python3 # -*- coding: utf-8 -*- import joblib import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.ensemble import AdaBoostRegressor from sklearn.model_selection import train_test_split # Set the random seed random_seed = 0 np.random.seed(random_seed) # Load the dataset dataset = fetch_california_housing() X, y = dataset.data, dataset.target # Split the dataset into training and testing sets X_train, _, y_train, _ = train_test_split(X, y, test_size=0.25, random_state=random_seed) # Create and train model model = AdaBoostRegressor(n_estimators=100, random_state=random_seed) model.fit(X_train, y_train) # Save the trained model to disk joblib.dump(model, 'adaboost_regressor.joblib')