Logging training Running DummyClassifier() accuracy: 0.495 recall_macro: 0.100 precision_macro: 0.050 f1_macro: 0.066 === new best DummyClassifier() (using recall_macro): accuracy: 0.495 recall_macro: 0.100 precision_macro: 0.050 f1_macro: 0.066 Running GaussianNB() accuracy: 0.830 recall_macro: 0.537 precision_macro: 0.432 f1_macro: 0.400 === new best GaussianNB() (using recall_macro): accuracy: 0.830 recall_macro: 0.537 precision_macro: 0.432 f1_macro: 0.400 Running MultinomialNB() accuracy: 0.900 recall_macro: 0.579 precision_macro: 0.510 f1_macro: 0.514 === new best MultinomialNB() (using recall_macro): accuracy: 0.900 recall_macro: 0.579 precision_macro: 0.510 f1_macro: 0.514 Running DecisionTreeClassifier(class_weight='balanced', max_depth=1) accuracy: 0.400 recall_macro: 0.200 precision_macro: 0.113 f1_macro: 0.124 Running DecisionTreeClassifier(class_weight='balanced', max_depth=10) accuracy: 0.909 recall_macro: 0.641 precision_macro: 0.531 f1_macro: 0.520 === new best DecisionTreeClassifier(class_weight='balanced', max_depth=10) (using recall_macro): accuracy: 0.909 recall_macro: 0.641 precision_macro: 0.531 f1_macro: 0.520 Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) accuracy: 0.931 recall_macro: 0.723 precision_macro: 0.563 f1_macro: 0.595 === new best DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) (using recall_macro): accuracy: 0.931 recall_macro: 0.723 precision_macro: 0.563 f1_macro: 0.595 Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) accuracy: 0.946 recall_macro: 0.739 precision_macro: 0.614 f1_macro: 0.647 === new best LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) (using recall_macro): accuracy: 0.946 recall_macro: 0.739 precision_macro: 0.614 f1_macro: 0.647 Running LogisticRegression(C=1, class_weight='balanced', max_iter=1000) accuracy: 0.948 recall_macro: 0.749 precision_macro: 0.623 f1_macro: 0.657 === new best LogisticRegression(C=1, class_weight='balanced', max_iter=1000) (using recall_macro): accuracy: 0.948 recall_macro: 0.749 precision_macro: 0.623 f1_macro: 0.657 Best model: LogisticRegression(C=1, class_weight='balanced', max_iter=1000) Best Scores: accuracy: 0.948 recall_macro: 0.749 precision_macro: 0.623 f1_macro: 0.657