--- license: apache-2.0 datasets: - irlab-udc/alpaca_data_galician language: - gl - en --- # Llama3-8B Lora adapter for Galician language This repository houses a specialized LoRA (Low-Rank Adaptation) Adapter designed specifically for fine-tuning Meta's LLaMA 3-8B Instruct version for applications involving the Galician language. The purpose of this adapter is to efficiently adapt the pre-trained model, which has been initially trained on a broad range of data and languages, to better understand and generate text in Galician. ## Adapter Description This Lora Adapter has been specifically fine-tuned to understand and generate text in Galician. It was refined using a modified version of the [irlab-udc/alpaca_data_galician](https://huggingface.co/datasets/irlab-udc/alpaca_data_galician) dataset, enriched with synthetic data to enhance its text generation and comprehension capabilities in specific contexts. ### Technical Details - **Base Model**: Unsloth Meta's LLaMA 3 8B Instruct (https://huggingface.co/unsloth/llama-3-8b-Instruct-bnb-4bit) - **Fine-Tuning Platform**: LLaMA Factory - **Infrastructure**: Finisterrae III Supercomputer, CESGA (Galicia-Spain) - **Dataset**: [irlab-udc/alpaca_data_galician](https://huggingface.co/datasets/irlab-udc/alpaca_data_galician) (with modifications) - **Fine-Tuning Objective**: To improve text comprehension and generation in Galician. ### Trainning parameters The project is still in the testing phase, and the training parameters will continue to vary to find the values that result in a more accurate model. Currently, the model is trained with a set of **5000 random entries** from the dataset and the following values: - num_train_epochs=3.0 - finetuning_type="lora" - per_device_train_batch_size=2 - gradient_accumulation_steps=4 - lr_scheduler_type="cosine" - learning_rate=5e-5 - max_grad_norm=1.0 ## Testing The Adapter Below, we have several examples of question-answer pairs comparing the pure Llama3 model with the Llama3 model fine tunned for the Galician language. *Llama3-8B* 👎 ```bash User: Cal é a capital de Canadá? Assistant: Não! Cal não é a capital de Canadá. A capital de Canadá é Ottawa. ``` *Llama3-8B-Galician-Chat-Lora* ✅ 👍 ```bash User: Cal é a capital de Canadá? Assistant: A capital de Canadá é Ottawa. ``` *Llama3-8B* 👎 ```bash User: Cantos habitantes ten Galicia? Assistant: Según el Instituto Nacional de Estadística (INE) de España, la población residente en Galicia al 1 de enero de 2021 era de aproximadamente 2.79 millones de personas. ``` *Llama3-8B-Galician-Chat-Lora* ✅ 👍 ```bash User: Cantos habitantes ten Galicia? Assistant: Segundo as últimas estimacións, Galicia ten uns 2,8 millóns de habitantes. ``` ## How to Use the Adapter To use this adapter, follow the example code provided below. Ensure you have the necessary libraries installed (e.g., Hugging Face's `transformers`). ### Installation Download de adapter from huggingface: ```bash git clone https://huggingface.co/abrahammg/Llama3-8B-Galician-Chat-Lora ``` Install dependencies: ```bash pip install transformers bitsandbytes "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" llmtuner xformers ``` ### Run the adapter Create a python script (ex. run_model.py): ```bash from llmtuner import ChatModel from llmtuner.extras.misc import torch_gc chat_model = ChatModel(dict( model_name_or_path="unsloth/llama-3-8b-Instruct-bnb-4bit", # use bnb-4bit-quantized Llama-3-8B-Instruct model adapter_name_or_path="./", # load Llama3-8B-Galician-Chat-Lora adapter finetuning_type="lora", template="llama3", quantization_bit=4, # load 4-bit quantized model use_unsloth=True, # use UnslothAI's LoRA optimization for 2x faster generation )) messages = [] while True: query = input("\nUser: ") if query.strip() == "exit": break if query.strip() == "clear": messages = [] torch_gc() print("History has been removed.") continue messages.append({"role": "user", "content": query}) print("Assistant: ", end="", flush=True) response = "" for new_text in chat_model.stream_chat(messages): print(new_text, end="", flush=True) response += new_text print() messages.append({"role": "assistant", "content": response}) torch_gc() ``` and run it ```bash python run_model.py ``` # Full Merged Model 💬 You can find a the adapter merged with the Llama3-8B base model in this repo: [https://huggingface.co/abrahammg/Llama3-8B-Galician-Instruct-GGUF](https://huggingface.co/abrahammg/Llama3-8B-Galician-Instruct-GGUF) To utilize this model within LM Studio, simply input the URL https://huggingface.co/abrahammg/Llama3-8B-Galician-Instruct-GGUF into the search box. For the best performance, ensure you set the template to LLama3. Or pull it in **Ollama** with the command: ```bash ollama run abrahammg/llama3-gl-chat ``` ## Citation ```markdown @misc{Llama3-8B-Galician-Chat-Lora, author = {Abraham Martínez Gracia}, organization={Galicia Supercomputing Center}, title = {Llama3-8B-Galician-Chat-Lora: A finetuned chat model for Galician language}, year = {2024}, url = {https://huggingface.co/abrahammg/Llama3-8B-Galician-Chat-Lora} } ``` ## Acknowledgement - [meta-llama/llama3](https://github.com/meta-llama/llama3) - [hiyouga/LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) - [irlab-udc/alpaca_data_galician](https://huggingface.co/datasets/irlab-udc/alpaca_data_galician)