from datasets import load_dataset,concatenate_datasets
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
from datasets import load_dataset
from tokenizers import ByteLevelBPETokenizer # Tokenizer, normalizers, trainers
model_dir = "../gpt-2-tamil" # ${MODEL_DIR}
# load dataset
dataset = load_dataset("oscar", "unshuffled_deduplicated_ta", split="train")
indic_tamil = load_dataset("csv",data_files="/tmp/indic_corp/ta.csv")
dataset = concatenate_datasets([dataset,indic_tamil['train']])
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=1000):
for i in range(0, len(dataset), batch_size):
yield dataset[i : i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(
batch_iterator(),
vocab_size=50265,
min_frequency=2,
special_tokens=[
"",
"",
"",
"",
"",
],
)
# Save files to disk
tokenizer.save(f"{model_dir}/tokenizer.json")