from datasets import load_dataset,concatenate_datasets from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer from datasets import load_dataset from tokenizers import ByteLevelBPETokenizer # Tokenizer, normalizers, trainers model_dir = "../gpt-2-tamil" # ${MODEL_DIR} # load dataset dataset = load_dataset("oscar", "unshuffled_deduplicated_ta", split="train") indic_tamil = load_dataset("csv",data_files="/tmp/indic_corp/ta.csv") dataset = concatenate_datasets([dataset,indic_tamil['train']]) # Instantiate tokenizer tokenizer = ByteLevelBPETokenizer() def batch_iterator(batch_size=1000): for i in range(0, len(dataset), batch_size): yield dataset[i : i + batch_size]["text"] # Customized training tokenizer.train_from_iterator( batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[ "", "", "", "", "", ], ) # Save files to disk tokenizer.save(f"{model_dir}/tokenizer.json")