license: cc-by-nc-sa-4.0
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- Orca
- AWQ
inference: false
orca_mini_v2_13b (4-bit 128g AWQ Quantized)
An Uncensored LLaMA-13b model in collaboration with Eric Hartford, trained on explain tuned datasets, created using Instructions and Input from WizardLM, Alpaca & Dolly-V2 datasets and applying Orca Research Paper dataset construction approaches.
This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click here.
Model Date
July 8, 2023
Model License
Please refer to original Orca Mini v2 model license (link).
Please refer to the AWQ quantization license (link).
CUDA Version
This model was successfully tested on CUDA driver v530.30.02 and runtime v11.7 with Python v3.10.11. Please note that AWQ requires NVIDIA GPUs with compute capability of 8.0
or higher.
For Docker users, the nvcr.io/nvidia/pytorch:23.06-py3
image is runtime v12.1 but otherwise the same as the configuration above and has also been verified to work.
How to Use
git clone https://github.com/mit-han-lab/llm-awq \
&& cd llm-awq \
&& git checkout ce4a6bb1c238c014a06672cb74f6865573494d66 \
&& pip install -e . \
&& cd awq/kernels \
&& python setup.py install
import time
import torch
from awq.quantize.quantizer import real_quantize_model_weight
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer, TextStreamer
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
from huggingface_hub import snapshot_download
model_name = "abhinavkulkarni/psmathur-orca_mini_v2_13b-w4-g128-awq"
# Config
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
# Tokenizer
try:
tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name, trust_remote_code=True)
except:
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, trust_remote_code=True)
streamer = TextStreamer(tokenizer, skip_special_tokens=True)
# Model
w_bit = 4
q_config = {
"zero_point": True,
"q_group_size": 128,
}
load_quant = snapshot_download(model_name)
with init_empty_weights():
model = AutoModelForCausalLM.from_config(config=config,
torch_dtype=torch.float16, trust_remote_code=True)
real_quantize_model_weight(model, w_bit=w_bit, q_config=q_config, init_only=True)
model.tie_weights()
model = load_checkpoint_and_dispatch(model, load_quant, device_map="balanced")
# Inference
prompt = f'''What is the difference between nuclear fusion and fission?
###Response:'''
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda()
t1 = time.time()
output = model.generate(
inputs=input_ids,
temperature=0.7,
max_new_tokens=512,
top_p=0.15,
top_k=0,
repetition_penalty=1.1,
eos_token_id=tokenizer.eos_token_id,
streamer=streamer)
t2 = time.time()
print("*"*80)
print(f"Generated {num_tokens/(t2-t1):.2f} token/s; {(t2-t1)*1000/num_tokens:.2f} ms/token")
Evaluation
This evaluation was done using LM-Eval.
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
wikitext | 1 | word_perplexity | 23.8997 | ||
byte_perplexity | 1.8104 | ||||
bits_per_byte | 0.8563 |
orca_mini_v2_13b (4-bit 128-group AWQ)
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
wikitext | 1 | word_perplexity | 27.4695 | ||
byte_perplexity | 1.8581 | ||||
bits_per_byte | 0.8938 |
Acknowledgements
If you found orca_mini_v2_13b
useful in your research or applications, please kindly cite using the following BibTeX:
@misc{orca_mini_v2_13b,
author = {Pankaj Mathur},
title = {orca_mini_v2_13b: An explain tuned LLaMA-13b model on uncensored wizardlm, alpaca, & dolly datasets},
year = {2023},
publisher = {GitHub, HuggingFace},
journal = {GitHub repository, HuggingFace repository},
howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v2_13b},
}
@software{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
journal={arXiv preprint arXiv:2302.13971},
year={2023}
}
@misc{openalpaca,
author = {Yixuan Su and Tian Lan and Deng Cai},
title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}},
}
@misc{alpaca,
author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
title = {Stanford Alpaca: An Instruction-following LLaMA model},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
@online{DatabricksBlog2023DollyV2,
author = {Mike Conover and Matt Hayes and Ankit Mathur and Jianwei Xie and Jun Wan and Sam Shah and Ali Ghodsi and Patrick Wendell and Matei Zaharia and Reynold Xin},
title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
year = {2023},
url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm},
urldate = {2023-06-30}
}
@misc{xu2023wizardlm,
title={WizardLM: Empowering Large Language Models to Follow Complex Instructions},
author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang},
year={2023},
eprint={2304.12244},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
The model was quantized with AWQ technique. If you find AWQ useful or relevant to your research, please kindly cite the paper:
@article{lin2023awq,
title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
journal={arXiv},
year={2023}
}