--- license: mit tags: - translation - generated_from_trainer datasets: - tatoeba metrics: - bleu model-index: - name: ft-tatoeba-ar-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: tatoeba type: tatoeba args: ar-en metrics: - name: Bleu type: bleu value: 49.84455855787226 widget: - text: "كريستيانو رونالدو يلعب مع نادي يوفنتوس" example_title: "Sentence 1" - text: "تخرج أحمد من الجامعة الأمريكية في الشارقة الشهر الماضي" example_title: "Sentence 2" - text: "لا يزال ديبالا يلعب لفريق يوفنتوس" example_title: "Sentence 3" - text: "شو عملتوا امس ؟" example_title: "Sentence 4" --- # ft-tatoeba-ar-en This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the tatoeba dataset. It achieves the following results on the evaluation set: - Loss: 0.7431 - Bleu: 49.8446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6